

HiRadMat tests on collimator elements

F. Carra

with contributions from O. Aberle, C. Accettura, A. Bertarelli, G. Gobbi, I. Lamas, M. Pasquali, J. Guardia-Valenzuela, T. Lefevre, M. Guinchard, A. Masi, E. Skordis, S. Redaelli and many others

International HiRadMat Workshop CERN, Geneva July 12th, 2019

Outline

- LHC collimators
- Beam impact tests on collimators
 - Categories of tests
 - Before HiRadMat
 - With HiRadMat
- What tests do we need for HL-LHC?
- Conclusions

LHC collimators

- Two main functions:
 - Beam cleaning
 - SC magnet protection
- Design quite similar between collimator families, main changes are in the jaw
- Potentially impacted by the beam in accidental scenarios
- Lighter materials for jaws closer to the beam, heavier for jaws more opened

Vacuum tank

F. Carra (CERN), 12 July 2019

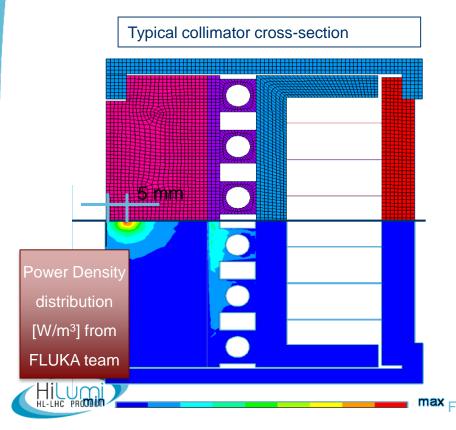
Jaw

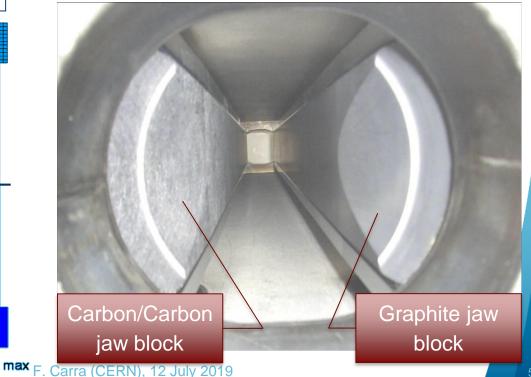
Actuation system

Beam impact tests

LHC Collimation

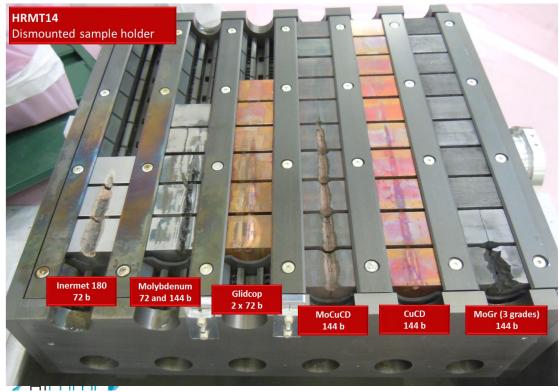
Project


CERN


- Advanced numerical analysis in the design phase must be complemented by experimental tests
- Necessary to assess consequences of an impact to the structure unpredictable with numerical codes (e.g. consequences to vacuum, contamination, etc.)
- Also, need of deriving material models for the thermomechanical calculations
- Three main test categories:
 - A. Material samples
 - **B.** Collimator sub-assemblies
 - **C. Full collimators**

Before HiRadMat

- Before availability of the HiRadMat facility, tests on collimator sub-assemblies (B) (CFC and graphite jaws, with copper and Glidcop housing) in TT40 and TT60 (2004 and 2006)
- Impacts of 288 b, 450 GeV, $\sigma = 1 \text{ mm}^2 \rightarrow \text{design accidental scenario}$ (beam injection error)
- Very important to assess the robustness of **graphitic materials**
- Allowed to choose **Glidcop over copper for the metallic structure**




With HiRadMat: tests on material samples (A) – HRMT14 (2012)

- Test of specimens from 6 different materials: Inermet180, Mo, Glidcop, MoCuCD CuCD, and MoGr (very old grade with high density, 5.4 g/cm3)
- Allowed characterization of materials of interest for collimators
- Tuning of numerical models, with very good benchmarking between measurements and simulations

• A. Bertarelli et al. (2013). An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility. Nucl. Instr. Meth. Phys. Res. B 308:88–99.

Molybdenum specimen

With HiRadMat: tests on material samples (A) – HRMT36 (2017)

#	Material	Density [g/cm³]	Coated	Coating Material	
1	IT180	18.0	×		ן
2	Ta10W	16.9	×		high density
3	Ta2.5W	16.7	×		hiç
4	TZM	10.0	×		
5	CuCD IFAM	5.40	×		ן בא
6	CuCD RHP	5.40	×		nedium density
7	SiC	3.21	×		σ ₃
8	MG-6403Fc	2.54	\checkmark	5µm TiN	ן
9	ND-7401-Sr	2.52	×		
10	MG-6530Aa	2.50	\checkmark	2µm Cu	-
11	MG-6541Fc	2.49	\checkmark	8µm Mo	
12	TPG	2.26	×		3
13	TG-1100	2.19	×		
14	R4550	1.90	\checkmark	2µm Cu	
15	CFC AC150K	1.88	\checkmark	8µm Mo	
16	Ti6Al4V (AM)	1.62	×		
17	CFOAM	0.40	×		ے بو
18	Al 6082-T651 (UoHud)	2.70	×		Dedicate d setup
	LHC PROJECT				

 Test on 16 target stations, including coated and uncoated material targets (rods) and electronic devices

LHC Collimation

Project

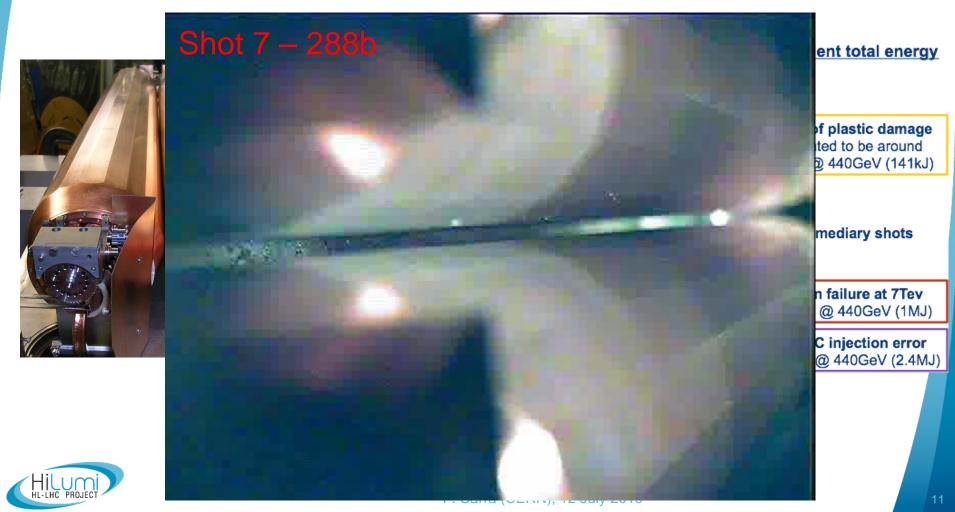
CERN

- Specimen geometry chosen to:
 - Generate easily detectable uniaxial signals
 - Enhance maximum energy per section (factor 2-3 above HL-LHC!) thanks to sample section ~1/10 of collimator jaw section
 - Energy density peak enhanced by squeezing the beam (30-50% above HL-LHC)

With HiRadMat: tests on collimator sub-assemblies (B) – HRMT23 (2015)

- Test on three collimator jaws: CFC (LHC design), MoGr and CuCD (HL-LHC design)
- Allowed validation of absorber jaw materials, as well as additional elements (taperings, BPM housing cooling circuit brazing)

With HiRadMat: tests on full collimators (C) – HRMT09 (2012)


- Testing of a spare TCT full collimator
- Allowed to derive damage limits for tertiary collimator jaws (Inermet180)
- Highlighted additional potential machine protection issues on top of mechanical damage, due to projection of fragments and dust (UHV degradation, contamination of vacuum chambers, complication of dismounting procedure)

With HiRadMat: tests on full collimators (C) – HRMT21 (2017)

- Test on SLAC rotatable collimator (Glidcop)
- Low-impedance secondary collimator capable of withstanding 7 TeV failures

Future tests for HL-LHC

- With LIU and HL-LHC, the bunch intensity will go up by almost a factor of 2
- е
- Future tests (categories A, B, C) in HiRadMat with the HL-LHC ultimate bunch intensity are of paramount importance for the Collimation Project,
 - and of strong interest for the scientific community for extending the validity of material models

Future tests for HL-LHC

- Aim is re-using as much as possible the expensive elements of previous test benches (mirrors, windows, feedthrough, pumps, supports, etc.)
- For experiments of category A (material samples), multi-purpose tank with rotatable barrel to host up to 16 samples of desired geometry

- For experiments of category B (sub-assemblies), we will see if we can re-use a tank adopted for past experiments
- For the tests of category C (full collimators), prototypes at the end of their qualification lifetime will be adopted

LHC Collimation

Conclusions

- HiRadMat allowed to push tests on collimator elements with respect to previous experiments in the SPS transfer lines (more extensive instrumentation, cameras, online diagnostics, controlled beam size and parameters)
- In the time period 2012-2017, important experiments were run in HiRadMat, providing key elements for the design of new collimators, and for the improvements of the understanding of the beam/matter interaction and simulations
- In view of the increase of beam stored energy in HL-LHC, as well as in future accelerators under design (FCC, CEPC-SPPC, etc.), we believe that continuing the experimental studies in a future HiRadMat run is of paramount importance for the Collimation project, as well as for similar beam intercepting devices
- The material models that could be extended are of relevant scientific interest in all applications were dynamic loads are involved

Thanks for your attention!

F. Carra (CERN), 12 July 2019