

Expression of Interests on the Future HiRadMat Experiments Taku Ishida*1

Shunshuke Makimura¹, Takeshi Nakadaira¹ Hajime Nishiguchi¹, Yoshinori Hashimoto¹

Shin-Ichiro Meigo², Masatoshi Futakawa²

J-PARC Center

¹: High Energy Accelerator Research Organization, KEK ²: Japan Atomic Energy

Agency, JAEA

Radiation Damage In Accelerator Target Environments

from

HiRadMat Workshop, CERN, 10 – 12 JUL 2019

Japan Proton Accelerator Research Complex

Material Irradiation Facility for ADS R&D

3GeV Rapid Cycling

Synchrotron (RCS)

25Hz, 1MW

Neutrino Experimental Facility (v)

295 km to Kamioka

> Materials & Life Science Facility (MLF, muon)

400 MeV

H⁻ Linac

30 GeV Main Ring Synchrotron (MR) Design beam power : Fast Extraction to v: 750kW → 1.3MW Slow Extraction to HEF: > 100 kW

A round: 1,568m

MLF 2nd

Target Station

> Hadron Experimental Facility (HEF)

COMET: search for μ -e conversion

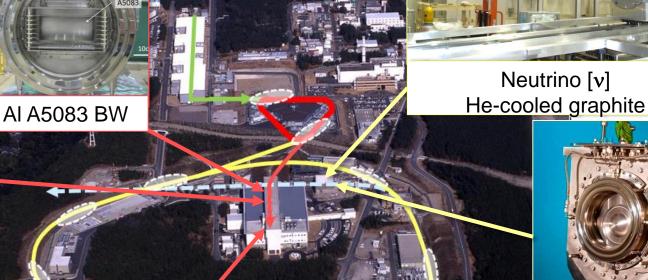
- J-PARC consists of a series of the world's most intense accelerators and experimental facilities producing and utilizing high-intensity proton beams
- Future experiments at HiRadMat facility will provide great opportunities to J-PARC for its undergoing researches and developments on accelerator, beamline & detector components

3 Letter-Of-Interests being submitted

- 1.Thermal shock experiments of advanced target / window /
dump materials with high energy proton beam at HiRadMat
FacilityFacility[S.Makimura/T.Nakadaira/TI/M.Futakawa et al]
- 2. Displacement cross section of target and beam window materials for 440 GeV/c protons [S.Meigo et al]
- 3. Development of the Next Generation High Radiation Tolerant Detector with the High Intensity Proton Beam at HiRadMat Facility [H.Nishiguchi, Y.Hashimoto et al]

T.Ishida

Targets & Windows at J-PARC


Muon [**MLF-MUSE**] Rotating Graphite

Neutron [**MLF**] Liquid Mercury

(3)

(JAEA)

T.Ishida

Hadron [**HEF**] Water cooled gold

Ti-6AI-4V BW

Graphite [COMET]

| HiRadMat Workshop, CERN, 10 – 12 JUL 2019

1. Advanced Targetry Material Studies

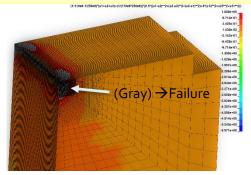
- For power upgrade aiming several hundred kW to MW, upgrade of each target and beam window system should be completed in a timely manner:
 - 1. Nickel (or Platinum) rotating target at HEF
 - 2. Light material (SiC composite, SiC-coated graphite) in place of (or combined with) the graphite target for v, MLF muon, COMET at HEF
 - Highly-ductile Tungsten target for COMET second phase, MLF second target station
 - 4. Syst. studies on Ti-alloy grades as beam window material
 - 5. Graphite, copper alloy, stainless steel for MR abort beam dump, with reference to CERN's beam dump design
 - 6. Lead Bismuth Eutectic (LBE) target at proposed Material Irradiation Facility for ADS

(JAEA

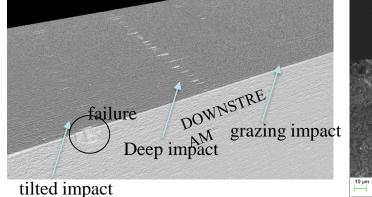
Study of Solid Materials with Thermal Shock(1)

[emperature

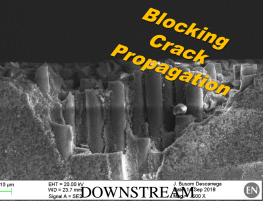
lype: Temperatu Jnit: °C lime: 1.e-004

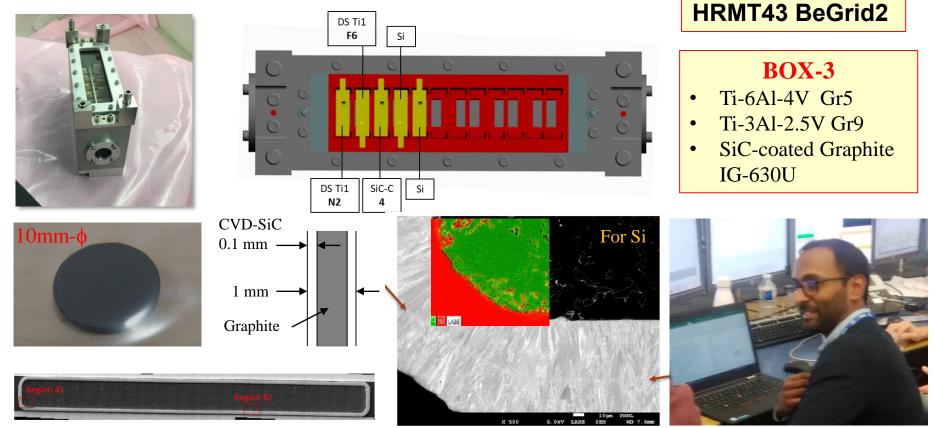

1420.4

954.25 721.19 488.12


NITE-SiC/SiC

- Density 3.2 g/cc (SiC) → more secondary emission than graphite
- SiC fibers + matrix, control
 mechanical properties / to replicate ductility


J. Maestre et al RaDIATE2018


2100° C

To continue the studies with various impact parameters, especially to compare behavior between cold and irradiated specimen at next BLIP run

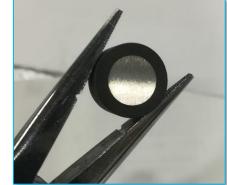
Study of Solid Materials with Thermal Shock(2)

 SiC-coated graphite / Titanium Alloy (cold & irradiated at BLIP) exposed to thermal shock at HiRadMat in autumn JFY2018

- How did the SiC-coating on graphite behave with beam impact?
- > How different between Ti-6AI-4V(α + β) and Ti-3AI-2.5V(nearly α) ?
 - How different between irradiated at BLIP / un-irradiated ?


(JAEA

Study of Solid Materials with Thermal Shock(3)


PROTAD

- Tungsten: high density/melting point, but become brittle by recrystalization at 1200'C
- 3D MA (FineGrain) → HIP → recrystallization under grain boundary sliding (GSMM): segregation / precipitation of TiC at grain boundary 13 :

T.Ishida

	Colour Legend		
	W-(1.2%) TiC	S1	HQ-GSMM
		S 2	LQ-GSMM
		S 3	HQ-w/o GSMM
		S 4	HQ-w/o GSMM
		S5	Hot rolled
	w	S6	Hot rolled and recrystallized
		S 7	Hot rolled

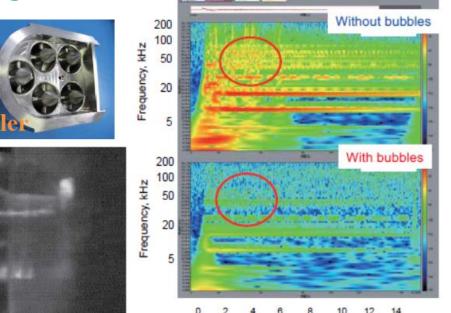
Target 5:

Core: Ø 10 mm Ta +

Matrix: Compressed EG

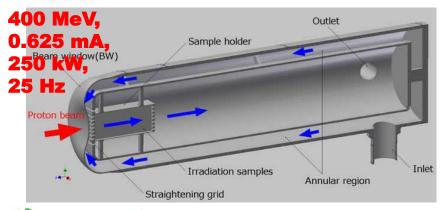
+Ø 2 mm Ta tube

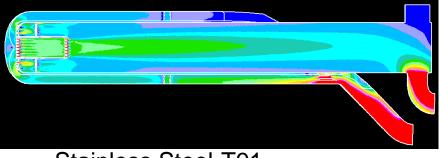
Ø 10 mm W + W-1.1TiC + Ø 10 mm lr



The fabrication process is improving. Need to continue studies, especially irradiation run at BLIP, and thermal shock studies (w-w/o irrad?)

Study of Shock Wave on Liquid Metal Target

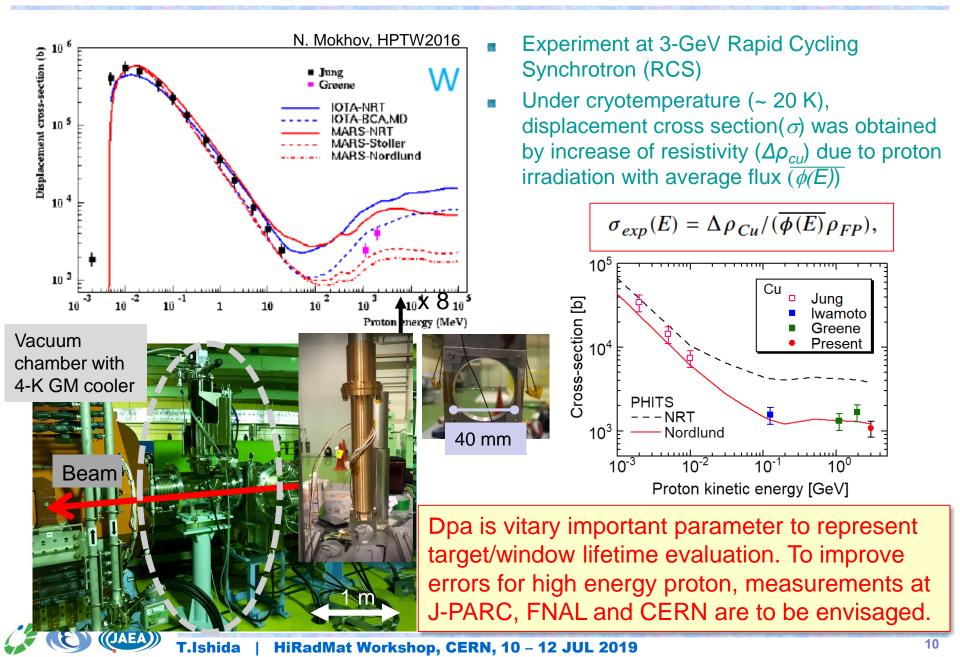

Liq-Mercury target



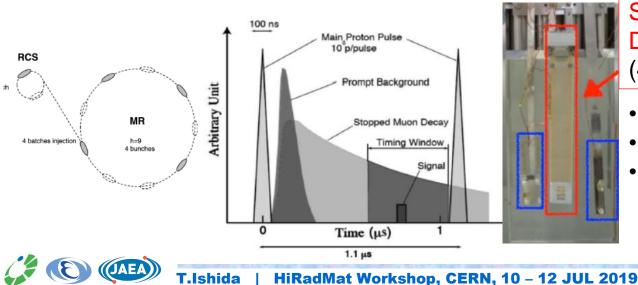
Liquid metal, or substituting liquid, are contained in a confined vessel w-w/o flow and gas bubbling.

Effects of various flow paths and flow rates are to be investigated.

LBE target for material irradiation facility



Stainless Steel-T91 LBE inlet : 400 °C outlet 500 °C


2. Displacement Cross-section Measurement

3. High Radiation Tolerant Detector

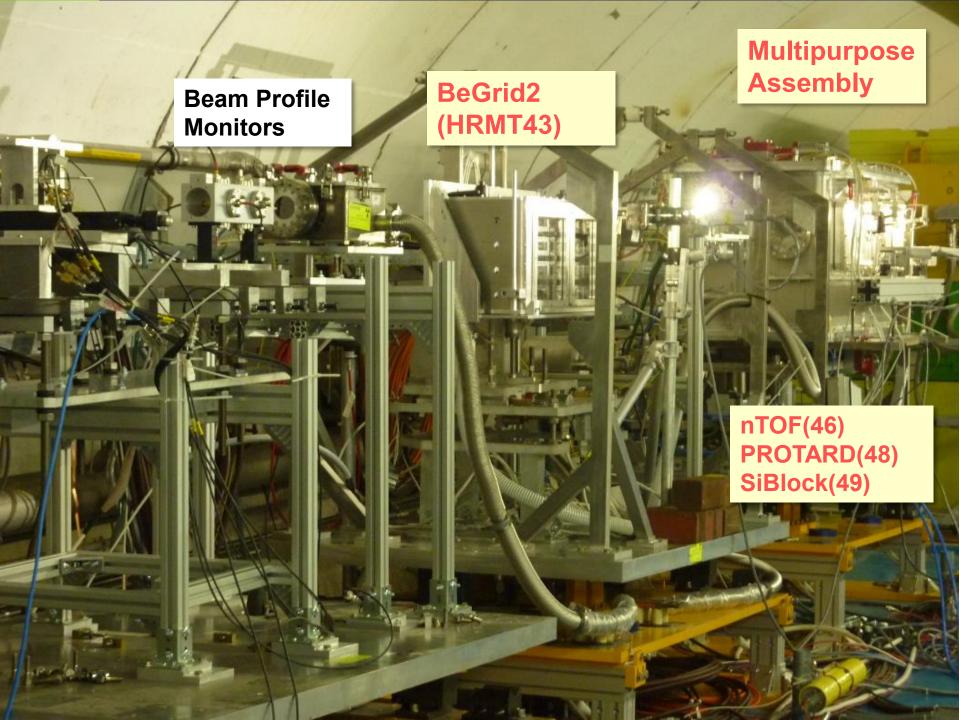
COMET: Coherent Muon-to-Electron Transition

BGeV, 3kW (56kW for phase-II) detector for u-e conversion Un-beam Extinction Monitor Pion production Pion production COMET Phase-I Layout

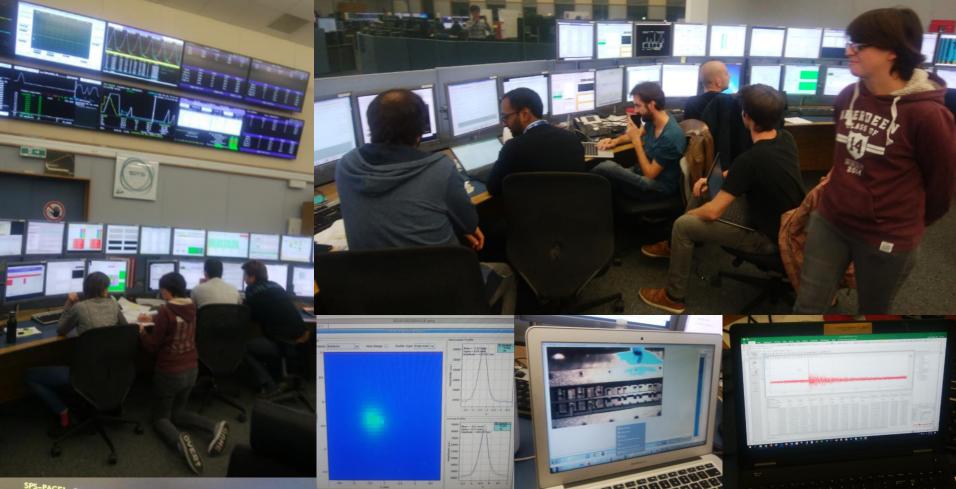
B(μ →e+ γ) = 10⁻¹¹~10⁻¹⁴(SUSY-GUT) < 4.2x10⁻¹³ (MEG 2016)

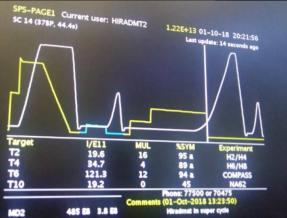
$\mu^- + (A, Z) \to e^- + (A, Z)$

$$E_{\mu e}pprox m_{\mu}-B_{\mu}\ \sim 105.1\,\,{
m MeV}$$
 for Al


Extinction Factor =

#of residual protons btw. 2 bunches #of protons in a bunch




Single crystal CVD Diamond (4mmx4mm,0.5mmt)

- Charge collection ~10ns
- down to single MIP level
- Vias Voltage to be off during main bunches

- Sep.28: PROTARD, SiBlock Completed © Completed ©
- Sep.29: PROTARD
- Oct.1~2: BeGrid2 Completed on 4am ©

Sturm und Drang !

Summary

3

(JAEA

T.Ishida

- HiRadMat is the only facility dedicated to thermal shock studies
 - Remarkable achievements to research and developments on high power targets, beam windows, collimators, beam dumps and other accelerator assemblies.
 - The facility has no equivalent and is indispensable for the world-wide high power accelerator communities.
 - The facility provides indispensable opportunities for young enthusiastic and talented engineers to design forefront accelerator materials and hardware
- J-PARC express strong interest on the future experiments to be managed at HiRadMat facility
 - 1. Advanced target/window/dump material developments
 - 2. Displacement Cross-Section Measurement
 - 3. In-beam rad.-tolerant detector to count intra-bunch MIPs

J-PARC-CERN Cooperation AMENDMENT No.2

- COOPERATION IN THE DEVELOPMENT OF PROTON LINEAR ACCELERATORS (2011~)
- Amendment No.1: COOPERATION IN THE DEVELOPMENT OF PROTON ACCELERATORS (2016~)
- No.2: Expand the co-operation to the fields of high-intensity accelerator target facilities and relevant technologies, to fully realize and accomplish the benefits of the high intensity proton accelerators:
- The Parties intend to co-operate in the following areas of activities:
 - Research and development of beam intercepting devices, such as targets, beam windows, collimators and beam dumps, including mechanical engineering and material expertise utilized in such devices;
 - Research and development of technologies and engineering techniques applied to the design, operation, and maintenance of high intensity accelerator target facilities, including target containment vessels and supporting infrastructure systems

To be in effect soon, + 5years (until 8 April, 2026)

(JAEA
