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Spall
fracture

Heavy plastic
deformation

“Interaction of high energy, high intensity
particle pulses with matter leads to
sudden temperature rises (with possible
changes of phase) and large thermal
deformations in very short times (initially
prevented by mass inertia), with
propagation of intense pressure waves,
possibly leading to extensive mechanical
damage” A. Bertarelli
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Material behaviour in beam impacts scenarios
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Why shock-waves?
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Why shock-waves?
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Pressure

Propagating surface continuous in displacements, but discontinuous in pressure, density, velocity, ...

@
Poig) — 3G No signals move ahead the shock front and any
E,, disturbance can catch the shock front from behind: the
Ci+Upy Us Po, po, Eo,  shock front is supersonic relative to the undisturbed
> —> up=0 material and subsonic relative to the shocked material
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The unloading wave (rarefaction wave), generated
- from the rear, travels faster than the shock front

Coordinate ~ and can reach the shock front reducing it intensity
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Shock-waves (l)



The EOS depends from the force of
interaction between atoms of the
lattice structure of the material
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Shock-waves (Il)



The EOS must include solid and fluid phases
P (GPa) (liquid, gas, vapour and plasma) and describes
N = , the relation between pressure, density,
3 )] %, ,
K $ T, temperature and energy
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Most pure material EOS are drawn from military research (mainly Los Alamos);
unfortunately these data are frequently inaccessible as they are classified -1’

EOS for specific mixtures and alloys are often totally unavailable 0 0-5 1 31 & 2
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Hydrocodes are nonlinear tools, initially developed for high speed mechanical impacts, where solids
can be approximated as fluids (deviatoric stresses neglected).
Simulations can be performed using different meshing schemes, Lagrangian and SPH as example.

IMM STANDART NATO MERMIS]

Lagrangian mesh moves and distorts with the material it

models as a result of forces from neighbouring elements.

Most efficient solution for structures. P«

Very slow when element incurs in large distorsion.

SPH (Smooth Particle Hydrodynamic): mesh-free l
method, with single node elements, ideally suited for

problems with extensive material damage and eSSt S A
separation. N 2 S8 Rilage .
Possibility to study crack propagation inside a body and
motion of ejected fragments/liquid droplets. e L i
SPH elements must be generally very small to accurately
model the material.

Compromise to be found between accuracy and
calculation time.
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The amplitude of the shock remains
constant. The pressure, at the end of
4- the shock, returns to zero
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Strong reduction in the shock amplitude due to the

fact that the elements are situated at increasing radii. al {
At the end of the shock the pressure reaches il '
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Uniaxial VS Cylindrical
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Example: copper bar
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Example: copper bar (Il)



Isochoric deposition: the deposition time is

)50 Element of maximum deposition higher than the thermodynamic time of the
e/, system
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Example: tungsten bar
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The high
pressure reached
in the portion of
the component
with high level of
deposited energy
produces heavy
plastic
deformation
beyond the shock
frontin a very
short time
(plastic strain-
rate in the order
of 104 s1)
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Why high strain-rate?
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Strain-rate & temperature effects (l)




Pure tungsten sample tested in
tension in 500 us at 600°C
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Strain-rate & temperature effects (Il)
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Meimei Li, M. Eldrup, T.S. Byun,N. Hashimoto,

L.L. Snead, S.J. Zinkle

50

a 1200

1000

Stress (MPa)

400

200

C 1200

1000

800

600

Stress (MPa)

400

200

800

600

T,,=80°C, T, ,=100°C
LT T
MECERD
Bl %%l T &
7“35 § é é E § 1 I | L 1 I 1 I
0 10 20 30 40 50 60 70
Strain (%)
T,=80°C, T, =25°C
L/‘_:’“’“‘“\ﬁiﬁ
EIEEE;
gl el gy |
£ & & 2
3 r\- ™ 1 1 Il
0 10 20 30 40 50

Strain (%)

b 1200

Stress (MPa)

o

Stress (MPa)

T, =80°C, T =22°C
1000 7
800+ ]
600 ¥ 1
400+ .
388 g8
g ©| ©| T © g g
200155 5|l 51 &) £ 7
£l & & 8 & 8 5 &
0 S~ ~ @ ~| o o c ‘ ‘ ‘
0 10 20 30 40 50 60 70
Strain (%)
1200 . . .
I T, =80°C, T__=-50°C
1000 F .
800 - .
600 [/ -
400 1
EEEEE
2007 g B| of B| B 1
g | % | §
£ & & & S
0 =) M~ M~ ~ o ) ‘
0 10 20 30 40 50
Strain (%)

POLITECNICO
DI TORINO

Irradiation



THE ENERGY DEPOSITION IS DENSITY DEPENDENT

At the beginning:

v define the correct number of primaries to achieve a good precision on
the energy deposition.

For each step:
v take as input the density map resulting from the LS-DYNA calculations;
— define discrete density levels: each level is an independent
FLUKA material;

v use a voxel structure to define the regions with different density in the
target block;

— associate to each voxel the corresponding material with the correct
density;

v take as input the energy map resulting from the FLUKA calculations;

— define discrete energy levels; interpolate the SESAME EOS for
getting the polynomial coefficient;

v' analyze the results;
RESTART a new mechanical analysis (1 or more bunches)

1000 mm

35 mm

l 7 TeV proton beam

3D lagrangian geometry
21x35x200 elements
Tungsten component
S-G model

Polynomial EOS

The mechanical model
equivalence is obtained in
Fluka via Voxel description

In previous analyses the
energy deposition was
calculated for the initial
condition and then used in a
multi-bunch case

21 mm
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LS-DYNA/FLUKA soft coupling
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E,, (GJ/m°) The energy distribution
changes both in values and
shape

The material, in which a
great amount of energy is
deposited, is subjected to a

significant density reduction
E,, (GJim?) becoming more transparent
to the next proton bunch

Tunnelling effect: the proton
beam penetrates more in
depth in the material in the
axial direction and the

energy is more diluted over
the target
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LS-DYNA/FLUKA (11)
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19.42
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15.40
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21.89

19.17
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11.03

8.32
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P, (kg/dm®)

Pgo (kgfdm®)

20.40

18.45

16.50

14.55

12.60

10.65

8.69

19.18

16.34

13.51

10.67

7.84

5.00
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21.41

18.93

16.45

13.98

11.50

9.03

6.55

Peo (kg/dm”)

22.06

19.13

16.20

13.27

10.34

7.41

4.48

The density
modification involves
higher longitudinal
coordinates
increasing the
number of bunches

After 60 bunches the
total length of the
target experiences a
reduction in density
in the zone around
the beam axis
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LS-DYNA/FLUKA (llI)



P, (GPa) P, (GPa) P,, (GPa)

178.96 113.26
14917 94 .41
119.39 75.55
P 1 (GPa)
53.41 89.61 56.70
59.82 37.84
44 64
30.04 18.98
35.88

The maximum of pressure
remains more or less in
the same longitudinal

The pressure wave starts
to travel inthe xand y
directions (the pressure
wave is cylindrical)

0.25
27.12 P, (GPa) The pressure increment,
91.60 consequent to the next
18.35 26.31 bunches, is reduced in the
- |9 59 610 zone, in which the first
bunch deposited a great
—0.83 4573 amount of energy. On the
30.44 other hand it should
15.15 increase in the part of the
014 target, in which there is an

increment in density
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P, (GPa) Pso (GPa) P,, (GPa) P, (GPa)
128.46 128 46 84.36 The pressure decreases in the
region where there is the
107.07 107.07 70.22 & . e
maximum deposition at the
85.68 beginning while increases in
64.29 the longitudinal direction due
to the more in depth
42.90 penetration of the beam.
13.68
2152 13.68 A greater reduction in density
0.13 can be observed along the
@@@pﬂ@@? M@@@M[@[/@d beam axis direction.
(kg/m®) (kg/m®) 3 3
P20 Pso P, (kg/m™) Pgo (kg/M™) Th : f :
20.43 22 55 20,43 e state in term of pressure is
oy J057 completely defined on the EOS
' | 18.41 19.37 knowing the density and the
16.40 16.19 16.40 16.19 energy. Considering the same
14.39 13.00 1436 13,00 density, the pressure is higher
where the energy is higher.
12.37 982 12.37 9.82 The differences between the
10.36 6.63 10.36 6.63 two cases become more
relevant increasing the
8.35 3.45 8 35 345 g
number of bunches.
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LS-DYNA/FLUKA: coupled vs. uncoupled



v' When a particle beam interacts with a solid target the particles deposit their energy in the
material.

v This provokes a dynamic response of the structure entailing thermal stress waves and
thermally induced vibrations or even the failure of the component.

v' The pressure and temperature increase and the materials could reach its melting
temperature or vaporize, depending on the impact conditions.

v' The high level of pressure reached produces the generation of strong cylindrical
shockwaves which travel through the material,

v' The part of the material, which remains solid, is characterized by high values of plastic
strain, strain-rate and temperature.

v" From these considerations it is clear what was the complexity of the problem, which
needed of a multi-physics approach to be completely examined: hydrocodes are the
numerical tools for the analysis of such scenarios
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24th DYMAT Technical Meeting

Temperature dependence of material behaviour at high strain-rate

9-11 September 2019, Stresa, Italy
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The evaluation of thermal loads on the impacted material is performed by the FLUKA Team at
CERN, using the statistical code, called FLUKA, based on the Monte-Carlo method.
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v’ The calculation takes into account a large number of primaries and then the results
are normalized to one ideal proton.

w v’ Hypothesis of isolated bunches: the reactions generated by the first bunch are
LN —  assumed to be finished before the arrival of the second bunch and so on.

v’ The probability of the interaction between particles and materials is strongly density
dependent: the higher the material atomic number, the higher its energy absorption.
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Indipendent variables & p, T; Dependent variables - P, E

SESAME Library
Multi-phase & phase transitions
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