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Material behaviour in beam impacts scenarios
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“Interaction of high energy, high intensity 

particle pulses with matter leads to 
sudden temperature rises (with possible 

changes of phase) and large thermal 

deformations in very short times (initially 
prevented by mass inertia), with 

propagation of intense pressure waves,

possibly leading to extensive mechanical 
damage” A. Bertarelli



Why shock-waves?
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Why shock-waves?
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Shock-waves (I)

Propagating surface continuous in displacements, but discontinuous in pressure, density, velocity, … 
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No signals move ahead the shock front and any 
disturbance can catch the shock front from behind: the 
shock front is supersonic relative to the undisturbed 
material and subsonic relative to the shocked material

A shock front is spontaneously generated starting 
from a quite smooth signal

The unloading wave (rarefaction wave), generated 
from the rear, travels faster than the shock front 
and can reach the shock front reducing it intensityTime
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Shock-waves (II)
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Such an EOS is defined as stiffening: the
pressure grows faster than linearly with the
volume. This implies that the wave velocity c
increases if the pressure increases.

The EOS depends from the force of
interaction between atoms of the
lattice structure of the material



Shock-waves (III)
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Most pure material EOS are drawn from military research (mainly Los Alamos); 
unfortunately these data are frequently inaccessible as they are classified
EOS for specific mixtures and alloys are often totally unavailable

Fortov et al.

The EOS must include solid and fluid phases 
(liquid, gas, vapour and plasma) and describes 

the relation between pressure, density, 
temperature and energy



Hydrocodes (LS-Dyna, Autodyn)

Lagrangian mesh moves and distorts with the material it 
models as a result of forces from neighbouring elements. 
Most efficient solution for structures.
Very slow when element incurs in large distorsion.

SPH (Smooth Particle Hydrodynamic): mesh-free 
method, with single node elements, ideally suited for 
problems with extensive material damage and 
separation.
Possibility to study crack propagation inside a body and 
motion of ejected fragments/liquid droplets.
SPH elements must be generally very small to accurately 
model the material. 
Compromise to be found between accuracy and 
calculation time.

Hydrocodes are nonlinear tools, initially developed for high speed mechanical impacts, where solids 
can be approximated as fluids (deviatoric stresses neglected).
Simulations can be performed using different meshing schemes, Lagrangian and SPH as example.



Uniaxial VS Cylindrical

Strong reduction in the shock amplitude due to the 
fact that the elements are situated at increasing radii. 
At the end of the shock the pressure reaches 
negative values: if no limits are imposed, the material 
can reach high values of negative pressure

The amplitude of the shock remains 
constant. The pressure, at the end of 
the shock, returns to zero
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Example: copper bar
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Example: copper bar (II)
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For elements situated 
along the beam axis (high 
deposition) the maximum 
pressure increases is during 
the deposition phase, 
which is followed by free 
expansion.

For elements situated far 
from the beam axis, the 
maximum pressure 
increase is reached at the 
arrival of the shock front 
and it is followed by the 
unloading phase.



R = 2.5 mm

Element of maximum deposition

R = 5 mm

Isochoric deposition: the deposition time is
higher than the thermodynamic time of the
system

The elements remains quite undisturbed
until the shock front reach them producing a
significant compression

Example: tungsten bar



Why high strain-rate?
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The high 
pressure reached
in the portion of 
the component 
with high level of 
deposited energy 
produces heavy 
plastic
deformation
beyond the shock 
front in a very
short time 
(plastic strain-
rate in the order
of 104 s-1)



Strain-rate & temperature effects (I)
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Plastic deformation is due to dislocations
movement. A dislocation continuosly
encounter obstacles as it moves through
the lattice. These obstacles make the 
movement of dislocation more difficult. 

Temperature helps the 
dislocation to overcome the 

obstacle, while strain-rate has
the opposite effect



Strain-rate & temperature effects (II)
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Irradiation

Low temperature neutron irradiation
effects on microstructure and tensile 
properties of molybdenum

Meimei Li, M. Eldrup, T.S. Byun,N. Hashimoto, 
L.L. Snead, S.J. Zinkle
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LS-DYNA/FLUKA soft coupling

At the beginning:

 define the correct number of primaries to achieve a good precision on 
the energy deposition.

For each step:

 take as input the density map resulting from the LS-DYNA calculations;

– define discrete density levels: each level is an independent

FLUKA material;

 use a voxel structure to define the regions with different density in the 
target block;  

– associate to each voxel the corresponding material with the correct 
density; 

 take as input the energy map resulting from the FLUKA calculations;

– define discrete energy levels; interpolate the SESAME EOS for
getting the polynomial coefficient;

 analyze the results;

RESTART a new mechanical analysis (1 or more bunches)

3D lagrangian geometry
21x35x200 elements
Tungsten component
S-G model
Polynomial EOS

35 mm
21 mm

The mechanical model 
equivalence is obtained in 
Fluka via Voxel description

In previous analyses the 
energy deposition was 
calculated for the initial 
condition and then used in a 
multi-bunch case

THE ENERGY DEPOSITION IS DENSITY DEPENDENT 7 TeV proton beam



LS-DYNA/FLUKA (II)

The energy distribution 
changes both in values and 
shape

The material, in which a 
great amount of energy is 
deposited, is subjected to a 
significant density reduction 
becoming more transparent 
to the next proton bunch

Tunnelling effect: the proton 
beam penetrates more in 
depth in the material in the 
axial direction and the 
energy is more diluted over 
the target



LS-DYNA/FLUKA (III)

The density 
modification involves 
higher longitudinal 
coordinates 
increasing the 
number of bunches

After 60 bunches the 
total length of the 
target experiences a 
reduction in density 
in the zone around 
the beam axis



LS-DYNA/FLUKA (IV)

The pressure increment, 
consequent to the next 
bunches, is reduced in the 
zone, in which the first 
bunch deposited a great 
amount of energy. On the 
other hand it should 
increase in the part of the 
target, in which there is an 
increment in density

The maximum of pressure 
remains more or less in 
the same longitudinal

The pressure wave starts 
to travel in the x and y
directions (the pressure 
wave is cylindrical)



LS-DYNA/FLUKA: coupled vs. uncoupled

The pressure decreases in the 
region where there is the 
maximum deposition at the 
beginning while increases in 
the longitudinal direction due 
to the more in depth 
penetration of the beam. 

A greater reduction in density 
can be observed along the 
beam axis direction.

The state in term of pressure is 
completely defined on the EOS 
knowing the density and the 
energy. Considering the same 
density, the pressure is higher 
where the energy is higher. 
The differences between the 
two cases become more 
relevant increasing the 
number of bunches.



Summary

 When a particle beam interacts with a solid target the particles deposit their energy in the 
material. 

 This provokes a dynamic response of the structure entailing thermal stress waves and 
thermally induced vibrations or even the failure of the component. 

 The pressure and temperature increase and the materials could reach its melting 
temperature or vaporize, depending on the impact conditions. 

 The high level of pressure reached produces the generation of strong cylindrical 
shockwaves which travel through the material,

 The part of the material, which remains solid, is characterized by high values of plastic 
strain, strain-rate and temperature. 

 From these considerations it is clear what was the complexity of the problem, which 
needed of a multi-physics approach to be completely examined: hydrocodes are the 
numerical tools for the analysis of such scenarios 
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particle beam impacts

Thank you for your attention



FLUKA

The evaluation of thermal loads on the impacted material is performed by the FLUKA Team at 
CERN, using the statistical code, called FLUKA, based on the Monte-Carlo method. 

 The calculation takes into account a large number of primaries and then the results 
are normalized to one ideal proton. 

 Hypothesis of isolated bunches: the reactions generated by the first bunch are 
assumed to be finished before the arrival of the second bunch and so on. 

 The probability of the interaction between particles and materials is strongly density 
dependent: the higher the material atomic number, the higher its energy absorption.
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Equation Of State

Indipendent variables → r, T; Dependent variables → P, E

Multi-phase & phase transitions
SESAME Library


