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Higher orders: why?
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The Large Hadron Collider

• LHC has now produced > 3 years of 13 TeV data
• Expected integrated luminosity > 150 fb−1 by the end of 2018
• Exceeded design peak luminosity by factor of 2
• Excellent machine availability > 50% of time in stable operation

Observation of 
Higgs boson decay 
to bottom quarks 
with CMS data

HIG-18-016 - arXiv:1808.08242,
provisionally accepted for publication in PRL

Luca Perrozzi (ETH Zurich) 
on behalf of the CMS Collaboration

LPCC seminar - CERN
Aug. 28st 2018
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Precision matters

Excellent machine and detector performance in tough environment

• data taking efficiency ∼ 94%, at or above 90% used for physics

• average pile-up ∼ 38 in 2017 and 2018

Experimental precision reached

• SM benchmark processes (e.g., W , Z production) measured to 1% exp. precision
(important tests of and constraints on theory)

• jets also doing great: total experimental systematic uncertainty in the cross section
∼ 6%, at low rapidities (|y | < 2)

There is lots more data to come

• HL-LHC approved with integrated luminosity goal of 3000 fb−1

• So far, only a fraction of foreseen data registered and analyzed

Must take up the challenge of high precision also on the theory side
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Precision from jets: α
S

at the LHC

[S. Bethke, Nucl. Part. Phys. Proc. 282-284 (2017) 149]

With the exception of lattice results, most results
within their subclass are strongly correlated, however
to an unknown degree, as they largely use similar data
sets and/or theoretical predictions. The large scatter
between many of these measurements, sometimes with
only marginal or no agreement within the given errors,
indicate the presence of additional systematic uncer-
tainties from theory or caused by details of the anal-
yses. Therefor the unweighted average of all selected
results is taken as pre-average value for each subclass,
and the unweighted average of the quoted uncertainties
is assigned to be the respective overall error of this pre-
average.

For the subclasses of hadron collider results and elec-
troweak precision fits, only one result each is available
in full NNLO, so that these measurements alone define
the average value for their subclass. Note that more
measurements of top-quark pair production at LHC are
meanwhile available, indicating that - on average - a
larger value of αs(M2

Z) is likely to emerge in the future;
see also [17] and the presentation of T. Klijnsma at this
conference [18]. The resulting subclass averages are in-
dicated in figure 1, and are summarized in table 1.

Table 1: Pre-average values of subclasses of measurements of
αs(M2

Z).

Subclass αs(M2
Z)

τ-decays 0.1192 ± 0.0018
lattice QCD 0.1188 ± 0.0011
structure functions 0.1156 ± 0.0021
e+e− [jets & shps] 0.1169 ± 0.0034
hadron collider 0.1151 + 0.0028

− 0.0027
ew precision fits 0.1196 ± 0.0030

Assuming that the resulting pre-averages are largely
independent of each other, the final world average
value is determined as the weighted average of the pre-
averaged values. An initial uncertainty of the central
value is calculated treating the uncertainties of all in-
put values as being uncorrelated and of Gaussian nature,
and the overall χ2 to the central value is determined. If
the initial χ2 is smaller than the number of degrees of
freedom, an overall, a-priori unknown correlation co-
efficient is introduced and adjusted such that the total
χ2/d.o.f. equals unity. Applying this procedure to the
values listed in table 1 results in the new world average
of

αs(M2
Z) = 0.1181 ± 0.0011 .

This value is in good agreement with that from

Figure 1: Summary of determinations of αs. The light-shaded bands
and long-dashed vertical lines indicate the pre-average values as ex-
plained in the text and as listed in table 1; the dark-shaded band and
short-dashed line represent the new overall world average of αs.

S. Bethke / Nuclear and Particle Physics Proceedings 282–284 (2017) 149–152150

α
S

from jet measurements at the LHC

• Several determinations based on jet
measurements at 7 and 8 TeV

• Typically NLO theory is used, except
for the tt̄ total cross section, which
based on NNLO

• Uncertainties already dominated by
theory, e.g., α

S
from transverse

energy-energy correlation at 8 TeV

α
S

(MZ ) = 0.1162± 0.0011 (exp.) +0.0076
−0.0061 (scale)± 0.0018 (PDF)± 0.0003 (NP)

[ATLAS Coll., Eur. Phys. J. 77 (2017) 872, Phys. Lett. B750 (2015) 427-447]
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Precision from jets: constraining PDFs

• Triple-differential dijet jet cross section at
√
s = 13 TeV

• Experimental uncertainties small enough to constrain PDFs

• Largest impact on the high-x region

[CMS Coll., Eur. Phys. J. C 77 (2017) 746]

[CMS-SMP-16-011, CERN-EP-2017]
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QCD at LHC

To fully exploit the physics potential of the LHC requires precision. QCD must be
understood/modeled as best as feasible

• parton model – beams of partons

• radiation off incoming partons

• primary hard scattering
(µ ' Q � ΛQCD)

• radiation off outgoing partons
(Q > µ > ΛQCD)

• hadronization and heavy hadron
decay (µ ' ΛQCD)

• multiple parton interactions,
underlying event [S. Höche, arXiv:1411.4085]

One particular aspect of precision: calculation of exact higher order corrections to
physical observables in perturbation theory
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The hard process in perturbation theory

The scale of the hard scattering is µ� ΛQCD, so by asymptotic freedom, we can use
perturbation theory – i.e., expansion in powers of αS(µ) – to compute it

σm = αp
S(µ)

[
σLO
m + αS(µ)σNLO

m + α2
S(µ)σNNLO

m + . . .
]

Representative Feynman-diagrams

−→

|M(0)
m 〉

+

(

−→

|M(1)
m 〉

+

−→

|M(0)
m+1〉

)
+

(
−→

|M(2)
m 〉

+

−→

|M(1)
m+1〉

+

−→

|M(0)
m+2〉

)
+ . . .

How many terms to compute?
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The precision frontier

LO: leading order QCD predictions give only order of magnitude estimates for rates and
rough estimates for shapes of distributions

• large dependence on unphysical scale choices (renormalization, factorization)

• jets 6= partons: jet structure appears only beyond LO

• conceptually and computationally ‘easy’, has been completely automated for years:
Helac, MadEvent, Sherpa,. . .

NLO: at least next-to-leading order corrections are required to obtain more realistic
estimates of cross sections and better pictures of relevant distributions

• general methods for organizing the computation well-known

• powerful new methods to compute one-loop matrix elements based on unitarity,
recursion relations

• also implemented into automated tools (aMC@NLO, GoSam, Helac-NLO, MadLoop,. . . )

Computing NLO corrections for general processes is essentially solved
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The precision frontier

NNLO: the precision frontier

• computing new two-loop matrix elements still difficult (but great progress!)

• truly general methods for organizing the computation efficiently still missing
(personal opinion)
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Why higher order corrections?

• Convergence is slow (α
S
∼ 0.1),

corrections are ‘large’

• Dependence on unphysical scales
considerably reduced at higher
orders

• Reliable estimate of theoretical
uncertainties

• Benchmark processes measured
with high experimental accuracy

• The lack of striking signals of new
physics at LHC suggests that BSM
effects will be accessible only
through precision studies

[Anastasiou, Dixon, Melnikov, Petriello,

Phys. Rev. D 69 (2004) 094008]
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Higher orders: how?
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NNLO ingredients – matrix elements

A generic m-jet cross section at NNLO involves

• 2-loop (VV)

• 1-loop (RV)

• tree (RR)

• m-parton kinematics, two loops (double virtual)

• 2→ 2 available (including VV production)

• More legs still difficult, but huge progress, 2→ 3 on the way

• m + 1 parton kinematics, one loop (real-virtual)

• NLO complexity, ‘doable’

• m + 2-parton kinematics, tree level (double real)

• LO complexity, ‘easy’

Assuming we know the relevant matrix elements, can we use those matrix elements to
compute cross sections?
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The cross section to NNLO accuracy

The cross section involves the squared matrix element

cross section =

∫
|matrix element|2 × phase space

Recall the structure of the matrix element

−→

|M(0)
m 〉

+

(

−→

|M(1)
m 〉

+

−→

|M(0)
m+1〉

)
+

(

−→
|M(2)

m 〉

+
−→

|M(1)
m+1〉

+

−→

|M(0)
m+2〉

)
+ . . .
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Squaring the matrix element, we find

∣∣∣∣∣ +

(
+

)
+

(
+ +

)
+ . . .

∣∣∣∣∣
2

=

= ︸ ︷︷ ︸
B

+

[
2<
( )

︸ ︷︷ ︸
V

+ ︸ ︷︷ ︸
R

]

+

[
2<
( )

+︸ ︷︷ ︸
VV

+ 2<
( )

︸ ︷︷ ︸
RV

+ ︸ ︷︷ ︸
RR

]
+ . . .
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The three lines on the r.h.s. correspond to the LO, NLO and NNLO contributions

• LO = B (Born)

• NLO = R + V (Real + Virtual)

• NNLO = RR + RV + VV (Double Real + Real-Virtual + Double Virtual)
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The NNLO correction

The NNLO correction to a generic m-jet observable is the sum of three terms

σNNLO =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm .

with different final-state multiplicities:

1. Double real
dσRR

m+2 = dφm+2 |M(0)
m+2|

2

2. Real-virtual
dσRV

m+1 = dφm+1 2<〈M(0)
m+1|M

(1)
m+1〉

3. Double virtual
dσVV

m = dφm
[
2<〈M(0)

m |M
(2)
m 〉+ |M(1)

m |2
]

Above, Jn is the jet function, it defines the precise physical observable we are computing.
Its form can be (arbitrarily) complicated, containing Θ functions, δ functions, etc.
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Aside: unresolved partons

‘Unresolved parton(s)’ or ‘parton(s) become(s) unresolved’: refers to a kinematical
configuration that is degenerate, i.e., either some momenta are collinear or some are soft
(or a combination).

Physically, if p partons are unresolved in an n + p-parton event, then the n + p momenta
are indistinguishable from the momenta of an n-parton event.
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Aside: unresolved partons

‘Unresolved parton(s)’ or ‘parton(s) become(s) unresolved’: refers to a kinematical
configuration that is degenerate, i.e., either some momenta are collinear or some are soft
(or a combination).

Physically, if p partons are unresolved in an n + p-parton event, then the n + p momenta
are indistinguishable from the momenta of an n-parton event.

Examples:

• 3 resolved partons, 2 unresolved partons

• two momentum pairs are collinear, pi ||pr
and pj ||ps

pi

pspj

pr

17



Aside: unresolved partons

‘Unresolved parton(s)’ or ‘parton(s) become(s) unresolved’: refers to a kinematical
configuration that is degenerate, i.e., either some momenta are collinear or some are soft
(or a combination).

Physically, if p partons are unresolved in an n + p-parton event, then the n + p momenta
are indistinguishable from the momenta of an n-parton event.

Examples:

• 3 resolved partons, 2 unresolved partons

• one momentum pair is collinear, a third
momentum is soft, pi ||pr and ps → 0

pi

ps

pr
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The problem - IR singularities

The NNLO correction to a generic m-jet observable is the sum of three terms

σNNLO =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm
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Double real

• Tree level squared MEs
with m + 2-parton kine-
matics

• MEs diverge as one or
two partons unresolved

• phase space integral di-
vergent (up to O(ε−4)

poles from PS integra-
tion in dim. reg.)

• no loops, so no explicit ε
poles in dim. reg.

Real-virtual

• One-loop squared MEs
with m + 1-parton kine-
matics

• MEs diverge as one par-
ton unresolved

• phase space integral di-
vergent (up to O(ε−2)

poles from PS integra-
tion in dim. reg.)

• one loop, explicit ε

poles up to O(ε−2)

from loop integration in
dim. reg.

Double virtual

• Two-loop squared MEs
with m-parton kinemat-
ics

• jet function screens di-
vergences in MEs as par-
tons become unresolved

• phase space integral is fi-
nite

• two loops, explicit ε

poles up to O(ε−4)

from loop integration in
dim. reg.
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The problem - IR singularities

The NNLO correction to a generic m-jet observable is the sum of three terms

σNNLO =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm

and naively (i.e., in d = 4 dims.) all three are divergent!

Kinoshita-Lee-Nauenberg theorem

Infrared singularities cancel between real and virtual quantum corrections at the same
order in perturbation theory, for sufficiently inclusive (‘IR and collinear safe’) observables.
I.e., the full correction is finite for appropriately defined quantities.

However

The various contributions (RR, RV and VV) usually need to be computed numerically.
(Recall Jn can be ‘arbitrarily’ complicated.) Hence the cancellation of infrared singularities
must be made explicit ⇒ need a method to deal with divergent phase space integrals.
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Handling singularities: phase space slicing - a caricature

Want to evaluate (at ε→ 0)

σ =

∫ 1

0
dσR(x) + σV where

dσR(x) = dx x−1−εR(x) , R(0) = R0 <∞

σV = R0/ε+ V , V <∞

• split integration into singular and non-singular regions∫ 1

0
dσR(x) =

∫ 1

δ
dσR(x) +

∫ δ

0
dσR(x)

• approximate the sum of the singular real + virtual

σ(δ) '
∫ 1

δ

[
dσR(x)

]
ε=0

+

[∫ δ

0

R0

x1+ε
+ σV

]
ε=0

=

∫ 1

δ
dx

R(x)

x
+

[
−
δ−ε

ε
R0 +

R0

ε
+ V

]
ε=0

=

∫ 1

δ
dx

R(x)

x
+ R0 ln δ + V

• The last integral is finite, computable with standard numerical methods and

σ = lim
δ→0

σ(δ)
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Handling singularities: phase space slicing

Phase space slicing: split phase space according to singular configurations

∫ 1

0
|MR |2 dφR +

∫
|MV |2 dφV =

∫ 1

δ
|MR |2 dφR︸ ︷︷ ︸

regularized
by cutoff

+

∫ δ

0
|MR |2 dφR +

∫
|MV |2 dφV︸ ︷︷ ︸

can be obtained from
resummation framework

• Not used at NLO

• Generates large numerical cancellations on cutoff (must check independence)

• Can use existing NLO calculations as basis (X+jet)

• Local subtractions for NLO-like singularities

• Simpler to implement (resummation)
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Handling singularities: phase space slicing

Two approaches based on different resummation frameworks

• q
T

subtraction [Catani, Cieri, de Florian, Ferrera, Grazzini]

• N-jettiness subtraction [Boughezal, Focke, Liu, Petriello; Gaunt, Stahlhofen, Tackmann, Walsh]

q
T

or jettiness used to disentangle “pure” NNLO regions

So far only for “simpler” configurations: one/zero colored particle in the final state

In principle works at NkLO for X production if we can compute (X+n jet) production at
Nk−nLO and can carry out the resummation to NkLL
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Handling singularities: subtraction method - a caricature

Want to evaluate (at ε→ 0)

σ =

∫ 1

0
dσR(x) + σV where

dσR(x) = dx x−1−εR(x) , R(0) = R0 <∞

σV = R0/ε+ V , V <∞

• define the counterterm
dσR,A (x) = dx x−1−εR0

• use it to reshuffle singularities between real and virtual contributions

σ =

∫ 1

0

[
dσR(x)− dσR,A (x)

]
ε=0

+

[
σV +

∫ 1

0
dσR,A (x)

]
ε=0

=

∫ 1

0
dx

[
R(x)− R0

x1+ε

]
ε=0

+

[
R0

ε
+ V −

R0

ε

]
ε=0

=

∫ 1

0
dx

R(x)− R0

x
+ V

• The last integral is finite, computable with standard numerical methods
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Handling singularities: subtraction method

Subtraction method: use local counterterm to rearrange singularities

∫ 1

0
|MR |2 dφR +

∫
|MV |2 dφV =

∫ 1

0
(|MR |2 −D)dφR︸ ︷︷ ︸

integrable

+

∫ 1

0
D dφR +

∫
|MV |2 dφV︸ ︷︷ ︸

poles cancel analytically

• Method of choice at NLO

• Subtractions can be completely local (good convergence)

• At NNLO lots of singular configurations with overlaps

• Integration of subtraction term quite complicated (can be numerical)
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Handling singularities: subtraction method

Definition of the subtraction term is not unique, several approaches

• Sector decomposition [Anastasiou, Melnikov, Petriello; Binoth, Heinrich]

• Antenna subtraction [Gehrmann, Gehrmann-de Ridder, Glover]

• Sector-improved residue subtraction (STRIPPER) [Czakon; Boughezal, Melnikov, Petriello]

• Projection-to-born [Cacciari, Dreyer, Karlberg, Salam, Zanderighi]

• CoLoRFulNNLO subtraction [Del Duca, GS, Trócsányi]

Personal opinion: general solution not yet available
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CoLoRFulNNLO
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Basic idea of subtraction

Idea

Reshuffle singular pieces between RR, RV and VV by subtracting and adding back
suitably defined approximate cross sections, such that this rearrangement renders each
piece finite individually in d = 4 dims.
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CoLoRFulNNLO - the structure

The NNLO correction to some m-jet observable J is the sum of three pieces

σNNLO[J] =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm

The three contributions are separately IR divergent in d = 4

• RR: double and single unresolved real emission

• RV: single unresolved real emission ⊕ ε-poles from m + 1 parton one-loop

• VV: ε poles from m parton two-loop

The approximate cross sections must account for all types of unresolved real emission
without double counting
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For the RR contribution subtractions are needed to regularize one- and two-parton
emissions

σNNLO
m+2 =

∫
m+2

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}
d=4

• A1 and A2 have overlapping singularities ⇒ A12 is needed to cancel

For the RV contribution there are only one-parton emissions but from one-loop-tree
interference

σNNLO
m+1 =

∫
m+1

{[
dσRV

m+1 +

∫
1
dσ

RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫
1
dσ

RR,A1
m+2

)
A1
]
Jm
}
d=4

• Notice the integrated A1 from RR which is still singular ⇒ subtraction is needed
(last term)

The m-parton contribution contains the double virtual and integrated subtractions

σNNLO
m =

∫
m

{
dσVV

m +

∫
2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫
1

[
dσ

RV,A1
m+1 +

(∫
1
dσ

RR,A1
m+2

)
A1
]}

d=4
Jm
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Building approximate cross sections

The subtraction terms must match the singularity structure of real emission pointwise (in
d dimensions) ⇒ phase space integrals over real radiation rendered convergent

• Singularity structure of real emission is universal: factorization formulae

|Mm+q({pm, pq})|2
{pq} unresolved
−−−−−−−−−−−−→ (8παsµ

2ε)q Singq({pq})⊗ |Mm({pm})|2

..

..
−→

..

..
⊗

• Explicit form of factorization formulae known for all unresolved limits at NNLO

[Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002]

[Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca, Kilgore, Schmidt
1998-9;Kosower, Uwer 1999; Catani, Grazzini 2000; Kosower 2003]

Define subtraction terms based on factorization formulae ⇒ the result is trivially general
and explicit

29



Subtraction terms from limit formulae

The following three problems must be addressed

1. Matching of limits to avoid multiple subtraction in overlapping singular regions of
PS. Easy at NLO: collinear limit + soft limit - collinear limit of soft limit.

A1|M(0)
m+1|

2 =
∑
i

[∑
i 6=r

1

2
Cir + Sr −

∑
i 6=r

CirSr

]
|M(0)

m+1|
2

2. Extension of IR factorization formulae over full PS using momentum mappings that
respect factorization and delicate structure of cancellations in all limits.

{p}m+1
r−→ {p̃}m : dφm+1({p}m+1;Q) = dφm({p̃}m;Q)[dp1,m]

{p}m+2
r,s−→ {p̃}m : dφm+2({p}m+2;Q) = dφm({p̃}m;Q)[dp2,m]

3. Integration of the counterterms over the phase space of the unresolved parton(s).
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Subtraction terms from limit formulae

Specific issues at NNLO

1. Matching is cumbersome if done in a brute force way. However, an efficient solution
that works at any order in PT is known.

2. Extension is delicate. E.g., counterterms for single unresolved real emission
(unintegrated and integrated) must have universal IR limits. This is not
guaranteed by QCD factorization.

3. Choosing the counterterms such that integration over the unresolved phase space is
(relatively) straightforward generally conflicts with the delicate cancellation of IR
singularities.
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General features of CoLoRFulNNLO

CoLoRFulNNLO: Completely Local subtRactions for Fully differential NNLO

Explicit formulae for general processes with colorless initial state

• Automation is possible

• Inclusion of hadronic initial states on the way

Fully differential in phase space, completely local subtractions

• Can compute any IR and collinear-safe observable in d = 4 dims.

• Azimuthal and color correlations correctly taken into account in unresolved emissions

Poles of integrated subtraction terms computed analytically

• Can check pole cancellation in (double) virtual contribution explicitly

Subtractions built using universal IR limit formulae and exact PS factorization

• Altarelli-Parisi splitting functions, soft currents

• Phase space factorizations based on momentum mappings that can be generalized
to any number of unresolved partons
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MCCSM

MCCSM is a Monte Carlo for the CoLoRFulNNLO Subtraction Method

• Completely general and fully automatic

• Highly flexible and tunable

• Phase space is recursively constructed, MINT is used for Monte Carlo integration

• Histogram output in YODA format through an interface to YODA

• Written in standard fortran90 (by Á. Kardos)

• User must provide only the squared MEs (including color- and spin-correlated)
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CoLoRFulNNLO at work
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CoLoRFulNNLO at work

The CoLoRFulNNLO subtraction scheme has been used to compute NNLO QCD
corrections to

• Higgs boson decay into bottom quarks

[Del Duca, Duhr, GS, Tramontano, Trócsányi 2015]

• event shapes and groomed event shapes in e+e− → 3 jets

[Del Duca, Duhr, Kardos, GS, Trócsányi 2016;
Del Duca, Duhr, Kardos, GS, Szőr, Trócsányi, Tulipánt 2016

Kardos, GS, Trócsányi 2018]

• energy-energy correlation in e+e− → 3 jets

[Del Duca, Duhr, Kardos, GS, Trócsányi 2016;
Tulipánt, Kardos, GS 2017]

Will discuss two applications

• New measurement of αs(MZ ) from energy-energy correlations in e+e− collisions

[Kardos, Kluth, GS, Tulipánt, Verbytskyi 2018]

• Full NNLO QCD corrections to VH production with H → bb̄ decay at the LHC

[Ferrera, GS, Tramontano 2017]
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Energy-energy correlation

Energy weighted distribution of angles χ between particles

1

σt

dΣ(χ)

d cosχ
≡

1

σt

∫ ∑
i,j

EiEj

Q2
dσ

e+e−→ ij+X
δ(cosχ− cos θij )

Was measured extensively at LEP and predecessors

Accurate theory predictions available

• NNLO fixed order from CoLoRFulNNLO

• NNLL resummation in back-to-back region [de Florian, Grazzini 2005]

Potential for yapa (yet another precision αs(MZ ))
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EEC data

• EEC one of the oldest
event shapes
[Basham, Brown, Ellis, Love

1978]

• However, no
measurements after
LEP1. . .

• Transverse EEC in
multijet events used
successfully at LHC
to determine αs at
NLO
[ATLAS coll., Eur. Phys. J. C77

(2017) 872, Phys. Lett. B750

(2015) 427-447]

Experiment
√
s, GeV, data

√
s, GeV, MC Events

SLD 91.2(91.2) 91.2 60000
OPAL 91.2(91.2) 91.2 336247
OPAL 91.2(91.2) 91.2 128032

L3 91.2(91.2) 91.2 169700
DELPHI 91.2(91.2) 91.2 120600
TOPAZ 59.0− 60.0(59.5) 59.5 540
TOPAZ 52.0− 55.0(53.3) 53.3 745
TASSO 38.4− 46.8(43.5) 43.5 6434
TASSO 32.0− 35.2(34.0) 34.0 52118
PLUTO 34.6(34.6) 34.0 6964
JADE 29.0− 36.0(34.0) 34.0 12719

CELLO 34.0(34.0) 34.0 2600
MARKII 29.0(29.0) 29.0 5024
MARKII 29.0(29.0) 29.0 13829

MAC 29.0(29.0) 29.0 65000
TASSO 21.0− 23.0(22.0) 22.0 1913
JADE 22.0(22.0) 22.0 1399

CELLO 22.0(22.0) 22.0 2000
TASSO 12.4− 14.4(14.0) 14.0 2704
JADE 14.0(14.0) 14.0 2112
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EEC predictions at NNLO

• NLO correction is large as judged
by scale variation ⇒ must go to
NNLO

• Higher order predictions improve
agreement with data

• Fixed order prediction diverges in
the forward and back-to-back
regions ⇒ resummation is required

• Sizeable deviations from data even
at NNLO ⇒ must take into
account hadronization corrections
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[Tulipánt, Kardos, GS,

Eur. Phys. J. C 77 (2017) no.11, 749]
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Hadronization corrections

Point-by-point multiplicative correction factors were derived using modern MC tools

• Sherpa2.2.4 for e+e− → 2, 3, 4, 5 jets, 2 jets at NLO using AMEGIC, COMIX and
GoSam, Lund (SL) or cluster (SC ) hadronization

• Herwig7.1.1 for e+e− → 2, 3, 4, 5 jets, 2 jets at NLO using MadGraph5 and GoSam,
cluster (HM) hadronization only

Hadronization corrections are ratios of hadron to parton level distributions in the MCs

Simulated samples were reweighted to data at hadron level on an event-by-event basis to
assure a better description of data (‘poor man’s tuning’)

Simultaneously allows for the estimation of the missing statistical correlations of data
points
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Hadronization corrections

MC predictions at parton and hadron level after reweighting
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[Kardos, Kluth, GS, Tulipánt, Verbytskyi

Eur. Phys. J. C 78 (2018) no.6, 498]

• Hadronization corrections decrease as ∼ 1/Q, O(10)% at 91.2 GeV
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Hadronization corrections

Hadron/parton ratios after reweighting at hadron level
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[Kardos, Kluth, GS, Tulipánt, Verbytskyi

Eur. Phys. J. C 78 (2018) no.6, 498]

• Hadronization corrections are parametrized using smooth functions to tame
statistical fluctuations (the parametrization is valid only in the fit range)
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Fits to data

Fits to data of NNLO+NNLL and NLO+NNLL predictions in the SL setup
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[Kardos, Kluth, GS, Tulipánt, Verbytskyi

Eur. Phys. J. C 78 (2018) no.6, 498]

• Fit range [60◦, 160◦], chosen to avoid regions where the theoretical prediction or
hadronization corrections become unreliable

• The result is insensitive to a ±5◦ change in fit range
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Fit uncertainties

Estimated the uncertainty by

• Varying the renormalization scale
xR = µR/Q ∈ [1/2, 2]: (ren.)

• Varying the resummation scale
xL ∈ [1/2, 2]: (res.)

• Varying the hadronization model
SL vs. SC : (hadr .)

• Considering the fit uncertainty
from the χ2 + 1 criterion as
implemented in MINUIT2: (exp.)

Notice reduced slope at NNLO+NNLL
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Result

Main result from global fit at NNLO+NNLL with SL setup

αs(MZ ) = 0.11750± 0.00018(exp.)± 0.00102(hadr .)± 0.00257(ren.)± 0.00078(res.)

αs(MZ ) = 0.11750± 0.00287(comb.)

Note using NLO+NNLL only (i.e., no NNLO), we find

αs(MZ ) = 0.12200± 0.00023(exp.)± 0.00113(hadr .)± 0.00433(ren.)± 0.00293(res.)

αs(MZ ) = 0.12200± 0.00535(comb.)

Inclusion of NNLO corrections crucial in reducing uncertainty: factor of 1/2!

The result is consistent with the world average (αs(MZ ) = 0.1175± 0.0029 vs.
0.1181± 0.0011) and competitive with other precision event shapes (1− T , C , etc.)
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VH production with H → bb̄ decay at the LHC

Motivations

• Associated VH production is most sensitive production mode to search for H → bb̄

– leptons, missing E
T

to trigger
– high p

T
V to suppress backgrounds

• Unique opportunity to study both the Higgs boson coupling to vector bosons and
down-type quarks

• H → bb̄ has the largest branching ratio (58%) for mH = 125 GeV

• Drives the uncertainty of the total Higgs boson width

Theory: narrow width approximation very accurate (ΓH � mH), so need fully differential
calculations for production and decay

• VH production with leptonic V decays known in NNLO QCD (using q
T

subtraction)

[Ferrera, Grazzini, Tramontano 2011]

• H → bb̄ known in NNLO QCD (using sector decomposition and CoLoRFulNNLO)

[Anastasiou, Herzog, Lazopoulos 2012;
Del Duca, Duhr, GS, Tramontano Z. Trócsányi 2015]
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VH(bb̄) in full NNLO QCD

Consider pp → VH + X → l1l2bb̄ + X in the narrow width approximation

dσpp→VH→Vbb̄ = dσpp→VH ×
dΓH→bb̄

ΓH
=

[ ∞∑
k=0

dσ
(k)
pp→VH

]
×

∑∞k=0 dΓ
(k)

H→bb̄∑∞
k=0 Γ

(k)

H→bb̄

× Br(H → bb̄)

For full NNLO, expand up to second order

dσNNLO
pp→VH→Vbb̄

=

dσ(0)
pp→VH ×

dΓ
(0)

H→bb̄
+ dΓ

(1)

H→bb̄
+ dΓ

(2)

H→bb̄

Γ
(0)

H→bb̄
+ Γ

(1)

H→bb̄
+ Γ

(2)

H→bb̄

+ dσ
(1)
pp→VH ×

dΓ
(0)

H→bb̄
+ dΓ

(1)

H→bb̄

Γ
(0)

H→bb̄
+ Γ

(1)

H→bb̄

+ dσ
(2)
pp→VH ×

dΓ
(0)

H→bb̄

Γ
(0)

H→bb̄

× Br(H → bb̄)
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VH(bb̄) in full NNLO QCD

Previous partial NNLO calculations did not consider NNLO corrections in decay

[Ferrera, Grazzini, Tramontano 2014-5
Campbell, Ellis, Williams 2016]

dσ
NNLO(prod)+NLO(dec)

pp→VH→Vbb̄
=

dσ(0)
pp→VH ×

dΓ
(0)

H→bb̄
+ dΓ

(1)

H→bb̄

Γ
(0)

H→bb̄
+ Γ

(1)

H→bb̄

+
(
dσ

(1)
pp→VH + dσ

(2)
pp→VH

)
×

dΓ
(0)

H→bb̄

Γ
(0)

H→bb̄

× Br(H → bb̄)

New: include NNLO contributions in decay and the combination of NLO contributions
for production and decay
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Results: cross sections

Kinematical selection cuts

pp →W+H + X → lνlbb̄ + X

• pl
T
> 15 GeV, |ηl | < 2.5

• Emiss
T

> 30 GeV

• pW
T
> 150 GeV

• at least two b-jets with pb
T
> 25 GeV

and |ηb| < 2.5

pp → ZH + X → ννbb̄ + X

• Emiss
T

> 150 GeV

• at least two b-jets with pb
T
> 25 GeV

and |ηb| < 2.5

Cross section predictions at the LHC with
√
s = 13 TeV

σ (fb) NNLO(prod)+NLO(dec) full NNLO

pp →W+H + X → lνlbb̄ + X 3.94+1%
−1.5%

3.70+1.5%
−1.5%

pp → ZH + X → ννbb̄ + X 8.65+4.5%
−3.5%

8.24+4.5%
−3.5%

• Cross sections reduced by ∼ 5–6% at full NNLO wrt. NNLO(prod)+NLO(dec)

• Uncertainties correspond to scale variation
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Results: distributions

Transverse momentum and invariant mass of leading b-jet pair: W+H(bb̄)

�������������

�������

���������	�


�
���

���
����������
������

������
����������	


��		�����
����������������� �

�!

�!"!!�

�!"!


�!"!
�

�!"!�

�!"!��

�!"!�

�!"!��

�
�
��
�

��
��#���$

�!"%

�!"&

�


�
"


��! �
!! �
�! ��!! ���! ��!!

�������������

�������

���������	�


�
���

���
����������
������

��������������	


��		�����
����������������� �

�!"!


�!"


�


�
�
��
�

����#���$

�!"%

�!"&

�


�
"�

�
"'

�
"%

�
"&

�&! �
!! �
�! �
'! �
%! �
&!

[Ferrera, GS, Tramontano Phys. Lett. B 780 (2018) 346-351]

• Contributions included in full NNLO produce important effects on the shapes:
−8% – +5% corrections in pbb̄

T
, −30% – +60% corrections in Mbb̄!
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Results: distributions

Transverse momentum and invariant mass of leading b-jet pair: ZH(bb̄)
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[Ferrera, GS, Tramontano Phys. Lett. B 780 (2018) 346-351]

• Contributions included in full NNLO produce important effects on the shapes:
−10% – −5% corrections in pbb̄

T
, −30% – +70% corrections in Mbb̄!
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Outlook and Conclusions
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The current situation

Incredible performance of LHC experiments demands a corresponding improvement of
theoretical predictions

Techniques and tools for performing NNLO QCD calculations quickly maturing

• Two-loop amplitudes for 1→ 3 and 2→ 2 processes known

• Several approaches for dealing with IR singularities and organizing the cross section
calculation proposed, more in the works

• Some public codes: FEWZ, DYNNLO, HNNLO, EERAD3, MATRIX, . . .

• Benchmark processes computed: e+e− → 2, 3 jets, ep → 2 jets, pp → V /H,
pp → V /H + jet, pp → VV , pp → 2 jets, pp → tt̄

Analyses are now making use of NNLO results

• Extraction of αs, constraining PDFs, searches,. . .

• First comparison of LHC jet data with NNLO
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Going beyond

More processes: the NNLO wish list [Les Houches 2017: Physics at TeV Colliders
Standard Model Working Group Report]

• pp → H + 2 jets

• pp → 3 jets

• pp → V + 2 jets

• pp → γγ + jet

• pp → tt̄ + jet

These are very challenging, reaching new bottlenecks

• Two-loop (massive) amplitudes: great progress, but still (very) difficult

• Numerics for double real radiation will be challenging for any method

More loops: N3LO,. . .

• First results for N3LO for simplest kinematics: pp → H and ep → jet

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger 2015;
Currie, Gehrmann, Glover, Huss, Niehues, Vogt 2018]

• Case-by-case computations or based on ‘projection to Born’ method that exploits
the special kinematics of the process
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Conclusions

Amazing progress in fixed order calculations in the past decade

• Automation of NLO

• NNLO for 3 jets at lepton colliders

• NNLO for 2→ 2 processes at hadron colliders

• Even N3LO for simplest kinematics

NNLO results are being used for analyses

But reaching new bottlenecks, in particular NNLO still very challenging beyond 2→ 2

Will need significant developments: new understanding, new ideas, new tools

The future is challenging but exciting!
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