

Previous Workshop Outputs Challenges to Address

Peter McIntosh STFC Daresbury Laboratory

ICEC-CERN-STFC

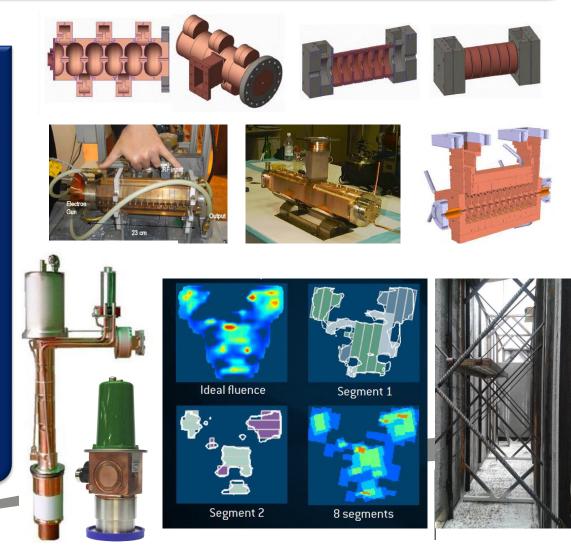
Accelerating the Future

Designing a Robust and Affordable Radiation Therapy Treatment System for Challenging Environments

20th – 22nd March 2019, AVANI, Botswana

Focussing on RTT Technologies

Workshop 1: 7 – 8 November 2016 at CERN


6 MeV Linacs:

- S-Band, TW, BTW and SW:
 Pakistan, CERN, Elekta.
- C-Band, IORT, SW:
 ➢ ENEA, ADAM.
 - UHF-Band, TW:

> CERN.

• RF Power Sources:

- Magnetrons (<10 MeV).</p>
- ➢ Klystrons (>10 MeV).
- MLCs.
- Shielding.
- Modularisation.

Workshop 1 Summaries

Workshop 1: 7 – 8 November 2016 at CERN

General Guidelines

Ahmed Meghzifene IAEA

- Fulfil existing safety and performance standards.
- Be better protected against environmental variations; temperature and humidity.
- Interface for remote diagnostics and adjustments.

Industrialisation Benefits

John Allen Elekta

- High quality and low cost products are best produced by industry.
- Volume and standardisation are key drivers of lower cost.
- Producing a 'linac for everybody' will be more sustainable than any 'special' device.

Session Summary

David Jaffray

- Need to consider the treatment device in context of the system.
- The scale of the problem should push us to pursue highly innovative and disruptive solutions that cross boundaries.
- Focus on the problem: Radiotherapy for 12.5M people by 2035.
- Think beyond the scaling of current solutions.

Further RTT System Evaluation

Workshop 2: 25 - 27 October 2017 at CERN

Electron sources:

- STFC, BC CA:
- Diode, triode, cold & photo cathodes Simulations:
- BC CA, VCU:
 - > SIMAC

Beam delivery:

- Oxford, VCU, BC CA:
 - Configurations
 - Magnet options electro/permanent

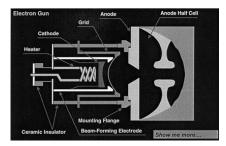
Linacs:

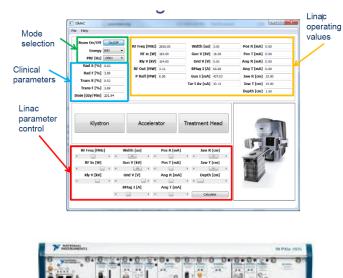
- STFC, Oxford:
 - > TW & SW
 - S, C and X-Band

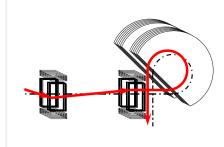
RF Sources:

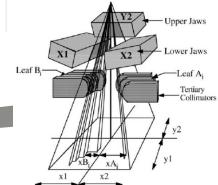
- STFC, Oxford:
- Magnetron, Klystron and SSA Safety and Operability:
- ŔHUL:
 - > QA/QC
 - Controls & Instrumentation
 - Shielding Self & External

MLCs:


- VCU:
 - Single & Double focus


Constraints:


Size, beam quality, stability, reliability and maintenance



General Workshop Conclusions

Accelerator Technologies

- Electron beam source:
 - Eliminate HV stage.
 - Eliminate filament heating.
 - Automatic phase synchronization with RF.
- Linac that does not need a focus magnet, and are stable with orientation in earth's B field.
- Magnet systems:
 - Simplified energy stability (re-think the 270 degree bend magnet).
- Can we use a linac simulation model to improve linac repair?
 - Predictive maintenance and support staff training.

Diagnostics

- Ideally passive, self correcting systems for beam instrumentation alternative is cost reduction and replication. **Costs**
- RTT system costs overwhelmed by indirect factors:
 - Marketing, servicing, treatment planning, informatics and support.
- Operational costs are very important:
 - System reduction, simplification, improved efficiency, standardised components.

Operations

- Priority to have easy maintenance, rapid recovery times, better upgradability and functionality.
- Open access software would be preferred allowing cooperative development and better standardisation:
 - Simple to use and intuitive interfacing.

General

- Reduce number of high technology, difficult to replace components with more generic components.
- Modularity and redundancy critically important..

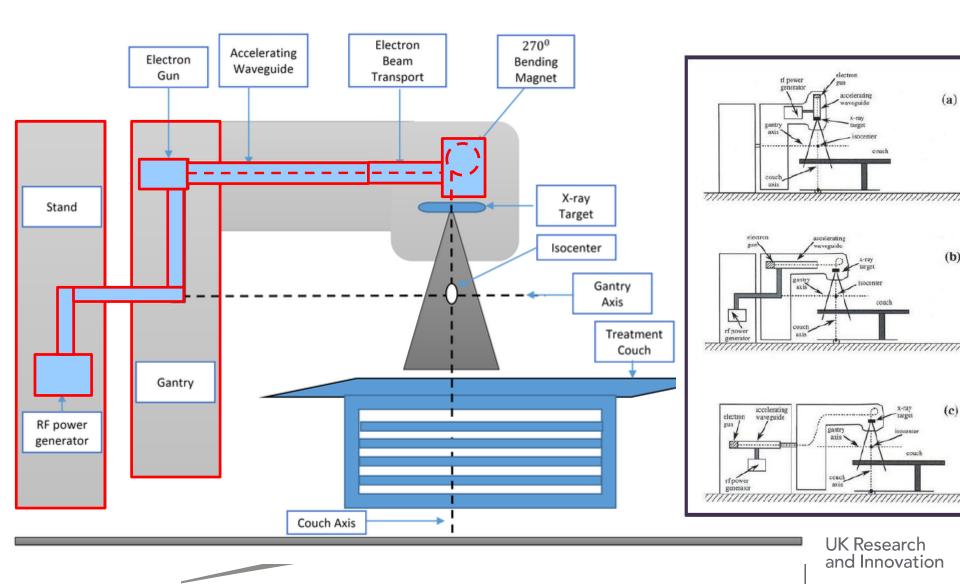
Funded RTT Developments

Workshop 3: 21 – 23 March 2018 at Stretton

STFC Funded Activities:

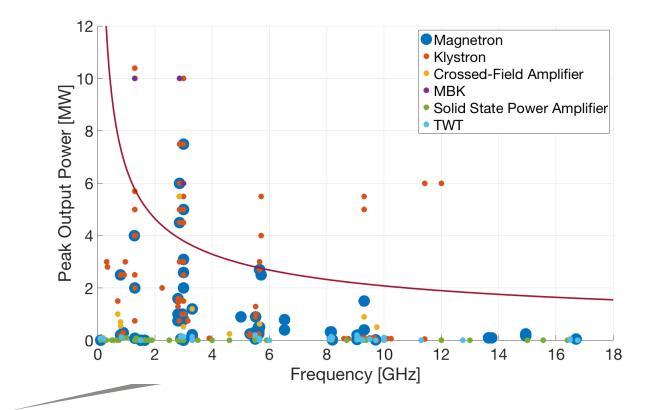
- Study of accelerator Technology Options
 Peter McIntosh (STFC)
- Study of robust beam delivery systems
 Suzie Sheehy (Oxford)
- Power systems and optimised RF structures for electron beam acceleration

Ivan Konoplev (Oxford)


• Linac simulations for stable and sustainable operation of developing country RTT linacs

Stewart Boogert (Royal Holloway)

 Cloud-based electronic infrastructure in support of linac-based Radiotherapy in challenging environments
 Ajay Aggarwal (Kings College London)



Conventional RTT Technology

RTT Peak Output Power Comparison David Constable Lancaster

- Comparison of single devices:
 - Larger RF power required for lower frequency.
 - Magnetrons & klystrons offer largest peak power across all frequencies.
 - TWTs and SSPAs would require multiple devices to meet example specification.
 - Few single devices meet required specification.

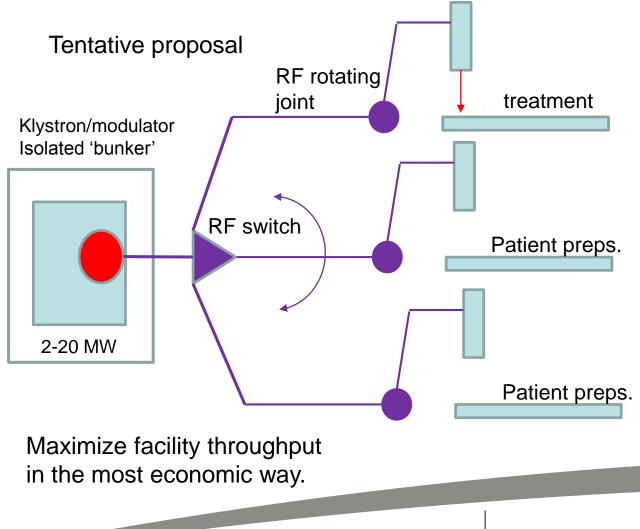
UK Research and Innovation

7

 $P_{RF}^{linac} \propto -$

RTT RF Source Summary

Device Type	Magnetron	Klystron	Crossed-Field Amplifier	Solid State Power Amplifier	Travelling Wave Tube	Multiple-Beam Klystron
Individual Unit Peak Output Power (MW)	5	5	0.5	0.1	0.2	6
Frequency (GHz)	2.86	2.86	9.75	0.4	5.5	2.998
Efficiency (%)	60	50	~50	No data	~25	60
Required RF power (MW)	3.9	3.9	2.68	10.4	2. 8	3.88
Units Required for ~5 MW at 3 GHz	1	1	6	140	14	1
Total Volume (m ³)	0.0103	0.2847	0.3	739	0.65	~0.2
Cooling	Forced air or water	Water	Forced air	Forced air	Water	Water
Magnet Required	Yes, electromagnet	Yes, PPM	Yes, electromagnet	No	Yes, PPM	Yes, PPM
Total Weight (kg) (incl. magnets)	58	150	150 (estimate)	21,000	1,850	95
Modulator Required	Yes	Yes	Yes	No	Yes	Yes



Example Implementation – Igor Syratchev CERN

"Personal overview of special issues of the robust/reliable medical accelerator," CERN-ICEC-STFC Workshop on Innovative, Robust and Affordable Medical Linear Accelerators for Challenging Environments, 2017.

- Multiple MBKs driving multiple linacs:
 - Over-pressurised bunker to isolate RF sources.
- Control over RF sources:
 - Single klystron feeds single linac.
 - Single klystron feeds multiple linacs.
 - Achieved with mechanical switches.
- Extension in lifetime of RF source:
 - Not all devices active at all times.
 - Should minimize downtime if one source fails.

Linac Manufacturing Techniques Ivan Konoplev Oxford

1/

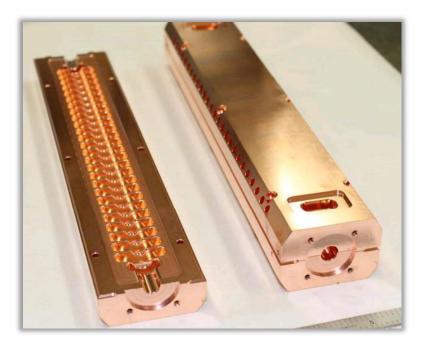
Oxford, UH-FLUX project

Oxford, UH-FLUX project

10

A 3D Printed Superconducting Aluminium Microwave Cavity arXiv:1604.04301v2 [physics.ins-det] 1 Jun 2016

School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia



CERN, CLIC

UK Research and Innovation

Manufacturing Using CNC Lathe Machining

Benefits:

- Surface preparation and conditioning
- EM properties
- Cost effective
- Easy aligning and quality control

Challenges:

- Vacuum sealing
- Design of asymmetric geometries

RTT Linac and RF Specifications

- Frequency:
 - > 1 GHz seems to be only solution
 - 3 GHz seems to be the preferred value for Western RTT (W-RTT)
 - What about for ODA recipient countries? Is this still the best option?
- Linac:
 - Standing wave:
 - Better choice for linac lengths < ~1.5 m
 - Preferred choice for W-RTT
 - Travelling wave:
 - Better choice for longer structures
 - Most RTT devices are a standard size:
 - Reducing linac length (higher shunt impedance) does not reduce device size
 - Increasing linac length will increase device size
- RF power source:
 - Depends on choice of RT energy range:

- Low-energy (4-6 MeV): Magnetron c. 2 MW
- High-energy (6-25+ MeV): Klystron c. 5-7.5 MW

UK Research and Innovation

Robust Permanent Beam Delivery Suzie Sheehy Oxford

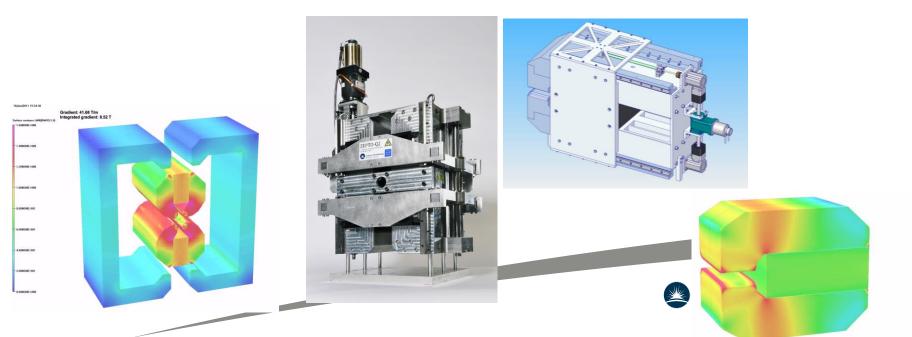
- What focussing does the robust medical linac need?
 - What is the emittance at the source?
 - Set up method of simulation to determine required focusing and beam quality.
- Are permanent magnets suitable for this application?
 - The electromagnets used are often *water cooled* - should aim to remove this complexity.
 - PMs may offer another option (cheap, easy to maintain, no power required), but fields are *temperature dependent* and have *less flexibility* compared to electromagnets.
- Bring this together with beam dynamics model & study beam quality.

Electron KE	Source ~30 keV	Exit 6 MeV
Gamma_rel = 1+T/E0	1.0587	12.742
Beta_rel = sqrt (1-gamma^-2)	0.3284	0.9969
Pc = E0*sqrt(gamma^2-1)	0.0104 (MeV)	6.49 (MeV)
Beam divergence	?	<=3 mrad
Beam diameter	1.8mm (?)	2-3 mm
Beam emittance	1.065 mm mrad (100%)	?

QUESTIONS/DESIGN CYCLE ...

For collaboration:

- · Define 'MVP' = minimum viable product
- · Separate out requirements into MVP & LINAC 2.0

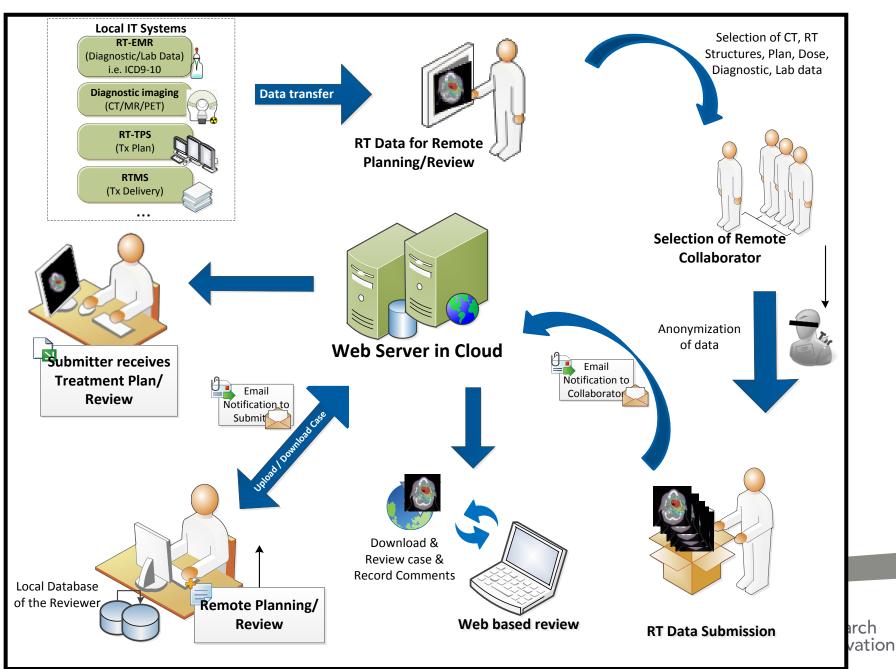


For magnetic focusing:

- · Single energy = far easier than multi energy
- Do we need an achromat/chicane anyway? How will we ensure the energy is correct otherwise?

Permanent Magnets in Accelerators¹⁷ Ben Shepherd STFC

Advantages	Disadvantages
No AC power required	Temperature dependent
Low operating costs	Radiation damage
No heat generated	Tuning difficult – and slow
No cooling water, no vibration	PMs variable
Compact	


Cloud-based Electronic Infrastructure Ajay Aggarwal Kings College

- Perform feasibility study for using the "Cloud".
- Visits in June 2018 Kumasi and Dar es Salaam.
- Preceded by detailed questionnaire regarding informatics capability.
- Initial development of Cloud-based Electronic Platforms in light of responses.

- Goal: To provide a cloud based software infrastructure to facilitate global collaboration in radiotherapy;
 - Electronic data sharing
 - Remote treatment
 planning
 - Remote peer review
 - Remote equipment troubleshooting

Process oriented view of the cloud-based electronic platform: Gen X

19

Electronic Infrastructure Benefits

Challenges Staff shortages:

- Radiation oncologists.
- Physicists.
- Dosimetrists.
- Data managers.

Education and training:

- Need for technical expertise especially for equipment use.
- Reliant on foreign sponsorship/fellowship.
- No standard training for some specialities within country.

El Benefits

Specialist manpower:

- Cloud based peer review.
- On-demand treatment planning.
- Hub and spoke solutions.

Training of multidisciplinary teams:

- Training modules in newer RT modalities.
- Guidelines for all involved in treatment pathway.
- Training partnerships with international partners.

Quality control:

- Facilitates standard operating procedures for QA.
- Links with Linac service training and fault learning securely backs up data.

Data collection and research:

- Aggregates data from several locations.
- Audit of service and identify gaps.
- Enables involvement with international research initiatives.

RTT Operational Experience Survey Hubert Foy AFRICSIS

Questionnaire

- Topics development
- Questions alignment
- Online form

(https://goo.gl/cssDRv)

- Audience
 - Professional societies
 - Geographic spread
 - 30 professionals via Emailing

Feedback

- 8 submissions, 5 countries, 5 subregions
- Engineer, physicist, consultant, prof

Institutions

□ University affiliated, public, private

Results – Equipment Service

Service Consideration	Input		
Linac per institution	1 - 2		
Fine tuning frequency	Private (4 - 6), Public (1 - 2)		
Part replacement/equip repair frequency	2		
Fine tuning/repair entity	In-house, manufacturer, 3 rd party		
Major challenges	Spare parts, power, tax, personnel, culture		
Cost of linac (land, construction, equipment)	\$4 - 5M		
Frequently replaced parts	Field light, motion control knob system on treatment couch, hand control, Electronic Card Motors of MLC		
Failure by irradiation disabled/year	2 - 7		

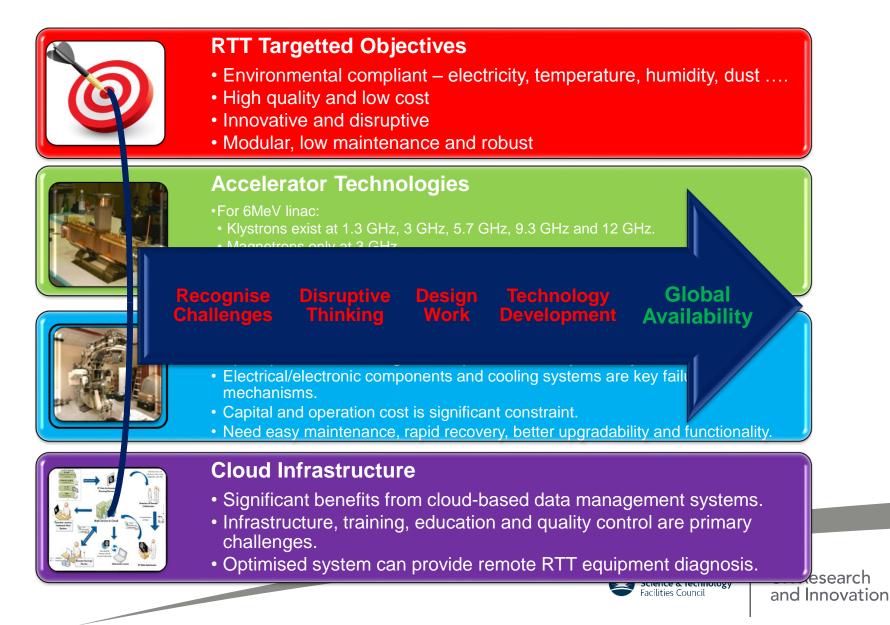
Results – Expected Needs

How to improve machine stability:

- □ Preventing maintenance/service
- Cooling system
- Less digitization
- Dedicated stepdown transformer
- □ Back up generator
- Change over switch
- □ Reliable and stable power supply

Training of locals

Need	Importance	
Machine stability	Most/More	
System operation	Most	
Operational cost	Most	
System efficiency	Most	
Multi-leaf collimators system ability to run with fluctuating power supply	More	
System robustness	More	
System modularity	More	
Maximum Photon Energy	More	
Capital cost	Most	
System performance	More	
Max electron energy	Not/Important	
Rotating gantry as opposed to fixed target or rotating patient	Important/more	



MVP Specification

Parameter	MVP	Upgrade	Comment
Fixed vs rotating gantry	gantry		type tbd
With or without rotating couch	without	without	
Beam energy or energies	single	single	4 to 10
Photon(s) only or also electrons	only	only	
With or without flattening filter			tbd, factor 10 current overhead needed
With or without MLC			tbd, design study needed
With or without bending magnet	straight ahead		may return
Combined gun-accelerator	no		
Vacuum sealed?	no		see above, modularity issue, may return
Travelling vs standing wave			tbd
Frequency			3, 6, 9 or 12 GHz (dimensions, pulse energy)
Klystron or magnetron or solid state	klystron or magnetron		
rf wave guide joints	not need with ring		avoid bending cables
Redundant RF source			later (depends on source type)
Expected dose rate	400	1500	cGy/min
Expected field size	35	40	cm
Minimum/maximum electron spot size	3 to 5	2 to 5	mm diameter FWHM, depends on MV imaging
Electro or permanent magnet			tbd, focusing and bending
All RF in gantry?	yes, objective		
RF cavity, Cu or Al?	tbd		
Beam stop	yes		
isocenter	125 cm	125 cm	
Other important issues/sub-systems to remember			
mains stabilization			
digital readout			
dose monitoring and control			
Air/water cooling			
Shielding			
Record and verify			

https://indico.cern.ch/event/698939/contributions/2942302/attachments/1622147/2584680/Parameter_Review_v2.xlsx

RTT Challenges to Solve

