







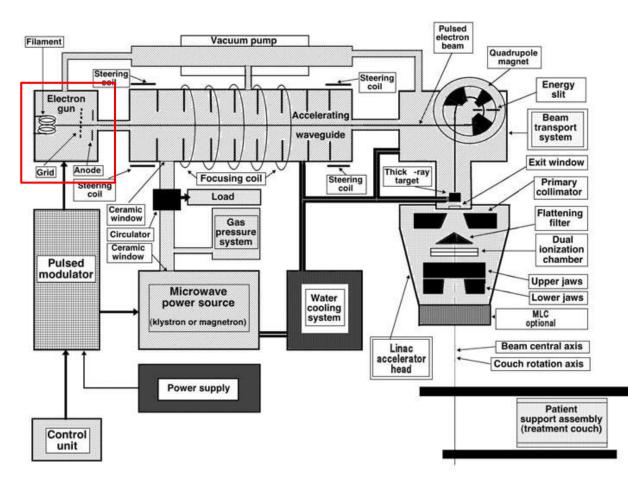


# Electron Gun for Radiotherapy Treatment (RTT) System

Boris Militsyn, Deepa Angal-Kalinin, Joe Herbert, Julian McKenzie UKRI STFC ASTeC, Daresbury Laboratory, UK Georgia Adam, Adrian Cross, Liang Zhang University of Strathclyde, Glasgow, UK Graeme Burt University of Lancaster, Lancaster, UK



#### Outline


- Medical and beam specifications of RTT accelerator
  - Derived electron gun specifications
- Operation modes of the electron source
- Design of a modular electron gun  $\bullet$
- Beam dynamics in the electron gun
- Required future work
- Conclusions

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



**UK Research** Science & Technology and Innovation

## **Typical Linear Accelerator for Radiotherapy Treatment (RTT)**



#### TREATMENT MACHINES FOR EXTERNAL BEAM RADIOTHERAPY E.B. PODGORSAK Department of Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



UK Research

### **Specifications for the RTT Accelerator**

- Medical parameters
  - Radiation dose 600-800 cGy/min (TBC)
  - Average X-ray energy 3 MeV
- To achieve these medical specifications the accelerator should provide following beam parameters:
  - Average current 75 μA on the X-ray target (TBC)
  - Electron beam energy 6-8 MeV (TBC)
  - Beam spot diameter on the target (FWHM) 1-3 mm
  - Beam time structure pulsed
- Robust and highly reliable
- Need considerations for
  - Cost, procurement, infrastructure, operation and maintenance

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



#### **Basic Specifications of the Electron Gun**

- RF accelerator cannot operate in Constant Wave (CW) regime due to high thermal load of the RF power in the accelerating structure, it operates in pulsed mode.
  - Pulse repetition frequency typically varies up to 300 Hz and is used as a knob to change required radiation dose.
    - For 75  $\mu A$  on X-ray target this translates to pulse charge of 0.25  $\mu C$
  - Pulse duration is typically defined by heat load on the X-ray target and RF structure, but typically does not exceed 5 μs.
    - Thus average pulse current on the X-ray target could be possibly reduced up to 50 mA (TBC with further studies).
- Electron gun of the RTT accelerator is typically based on grid-modulated thermionic cathode and should provide electron pulses with the current and duration enough to meet general RTT accelerator specifications

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



#### **Operation Modes of Electron Gun**

- Electron gun can operate in two possible modes:
  - Pulsed mode convenient scheme when gun generates electron pulse with the length equal to the duration of the linac RF pulse which is captured by the linac with a typical efficiency of 50% or less.
    - So gun average pulse current needs to be more than 100 mA
  - Train-pulsed mode more advance technology widely used in scientific linear accelerators. In this scheme the gun delivers a train of short electron pulses with a repetition rate of the main linac frequency or its subharmonic. Capture efficiency of these trains is close to 100%
    - So gun average pulse current could be reduced between 50 mA 100 mA (need further studies to confirm this number).
- Electron gun voltage is defined by available low cost high voltage technology and rarely exceeds 25 kV.

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



#### **Disadvantages of Pulsed Operation Mode**

- Large energy spread of the beam at the exit of the linac
  - Difficult to obtain small beam size
  - Difficult to transport the beam to the X-ray target
  - Relative Low efficiency of X-ray generation
- Low capture efficiency at the linac
  - Significant loss of electrons at injection to the linac
  - Loss of electrons during acceleration leading to parasitic Xrays increasing shielding requirements
  - Requires higher average pulse current from the cathode and HV power supply

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



#### **Challenges of Train-Pulsed Mode**

- Maximum grid modulation frequency now up to 3 GHz
- High cathode peak current
  - Material with higher emissivity
  - High temperature of the cathode
  - Higher requirements for the vacuum in the accelerator
- Synchronisation of the linac RF and grid modulation RF
- Some additional R&D are required
  - Optimisation of the micropulse length to obtain higher beam quality on the X-ray target
  - Simulation of the micropulse lengthening/deformation in the gun on the way to the linac
  - Optimisation of the modulation pulse length and cathode diameter to obtain beam with required parameters

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



#### **Example of Train-Pulsed Gun Specifications**



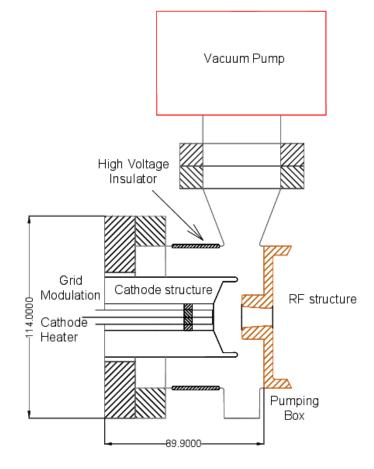
Typical grid modulated 8 mm dispenser thermionic cathode used in scientific accelerators:

 $I_{max} = 3 A$ 

|              | 75                                                     |
|--------------|--------------------------------------------------------|
|              | 300                                                    |
|              | 5                                                      |
|              | 3                                                      |
|              | 16.5                                                   |
| Micropulse   | Micropulse                                             |
| duration, ps | current, A                                             |
| 9.26         | 1.80                                                   |
| 18.52        | 0.90                                                   |
| 27.78        | 0.60                                                   |
| 37.04        | 0.45                                                   |
| 55.56        | 0.30                                                   |
|              |                                                        |
|              | 0.10                                                   |
|              | <i>duration, ps</i><br>9.26<br>18.52<br>27.78<br>37.04 |

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019




#### Modular Approach to the RTT Accelerator

- For operation in challenging environment, the accelerator should have high reliability
- Repair of the failed accelerator components should be cheaper and faster
- Consider modular design of the accelerator from simple and relative cheap components available from more than one manufacturer
- Least reliable components in the gun are cathode and vacuum pump
- We propose to implement two flange gun design based on standard cathode and vacuum pump.

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



#### **Modular Design of the RTT Electron Gun**





Grid modulated 8 mm Ir coated cathode JRC NJK2221.  $J_{max}=10 \text{ A/cm}^2$  $I_{max}= 5 \text{ A}$ 

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



#### Vacuum Design of the Electron Gun

- Assumptions
  - Pre-pumped using mobile pump cart to ~ 1.10<sup>-6</sup> mbar. All surfaces exhibit typical UHV characteristics (copper, stainless steel, aluminium etc.)
     Q ~ 1.10<sup>-9</sup> mbar.l/s/cm<sup>-2</sup>
  - Satisfactory outgassing can be achieved through bakeout AND/OR pre-bake of components and 'clean' assembly along with sufficient pumping time
  - Fast response over-pressure trips can be set reliably to protect main pumps
- Outline Design
  - Pump connected through 70mm (knife edge) flange with conductance C~ 150 l/s
  - Therefore the Max effective pumping speed possible is S<sub>eff</sub> ~ 150 l/s
  - Selection of Sputter Ion Pump Star Cell or Noble Diode due to likely presence of non-getterable gases (vacuum interventions and leaks). Generic Pump e.g. Agilent VacIon Plus (Star Cell) OR Gamma Vacuum TiTan (Triode)

| Generic Pump Size, I/s | S <sub>eff</sub> I/s | Pressure, mbar | Area, cm <sup>2</sup> |
|------------------------|----------------------|----------------|-----------------------|
| 150                    | 75                   | 1.10-8         | 750                   |
| 100                    | 60                   | 1.10-8         | 600                   |
| 75                     | 50                   | 1.10-8         | 500                   |
| 40                     | 40                   | 1.10-8         | 400                   |

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



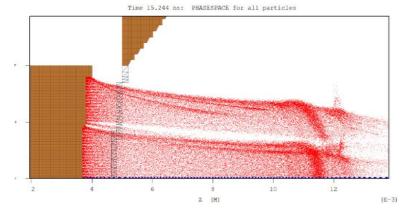
### **Beam Dynamics in the Train-Pulse Gun**

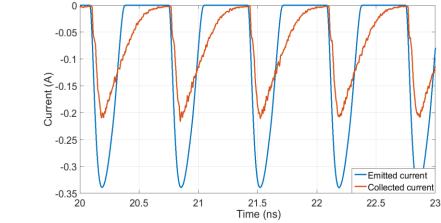
A modular, grid modulated DC thermionic electron source is proposed to use which may operate in two modes:

- Macro-pulse modulation when source emits the beam during whole macropulse
- Micropulse modulation when source injects the beam by short, 10's ps-length bunches

40

Z (M)


Time 1.448 ns: Of PHST (V) at OSYS\$AREA


(E-3)

Ð

20 <sup>B</sup>

40





Beam dynamics simulations have been carried out at the University of Strathclyde using the MAGIC PIC code specifically to design the RF gun.

(E-3)

(E+3)

40.000

32.000

28.000

24.000

16 000

12.000

8.000 4.000

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



#### Conclusions

- Specifications of electron guns for the RTT linacs have been derived and possible options to meet these specifications are proposed.
- We have established tools/techniques and analysis methods which can be tailored to the final specifications as they develop.
- The proposed scheme of modulated gun allows:
  - Higher capture efficiency
  - Reduced beam loses  $\rightarrow$  reducing parasitic X-ray background
  - Electron beam with low energy spread
  - Increased production of X-rays at the same average beam current
- Still to be done:
  - Detailed start-to-end simulations to optimise electron gun and linac design
  - Explore possibilities to prototype and test this concept.

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



#### Tasks & Status of Development of the Electron Gun

| Item                                                     | Contents                                                                                                                                                                                                                  | Current status              |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Beam parameters specifications                           | <ul> <li>Derived from earlier workshops. Can be changed if<br/>different as project progresses.</li> </ul>                                                                                                                | In progress – 75% completed |
| Beam dynamics simulation in the electron gun             | <ul> <li>To chose optimal:</li> <li>Gun operation mode (pulsed or train-pulsed)</li> <li>Gun modulation frequency</li> <li>Gun voltage</li> <li>Cathode parameters (bunch charge, bias and modulation voltage)</li> </ul> | In progress – 25% completed |
| Start-to-End beam dynamics simulation in the accelerator | <ul> <li>Beam parameters at the entrance of the accelerating structure</li> <li>Geometry</li> </ul>                                                                                                                       | In progress – 25% completed |
| Vacuum design of the electron gun                        | <ul> <li>Specification of the vacuum requirements</li> <li>Selection of the pumping technology</li> <li>Selection of the pump</li> </ul>                                                                                  | In progress – 25% completed |
| Mechanical design of the electron gun prototype          | <ul><li>Mechanical design</li><li>Integration of the source into diagnostic facility</li></ul>                                                                                                                            | Not started                 |
| Construction and characterisation of the prototype       | - Characterisation of the beam parameters at the entrance of the accelerator structure (beam profile, bunch length etc.)                                                                                                  | Not started                 |

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



#### Acknowledgements

- Project participants:
  - Dr. Robert Apsimon Lancaster University/Cl
  - Alejandro Castilla Loeza Lancaster University /CI/CERN
  - Dr. Shadike Saitiniyazi Lancaster University /CI
- Special acknowledgement
  - Dr. Lex van der Meer Radboud University, Nijmegen, NL

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



# Thank you for your attention!



#### **3 GHz 600 mA Train-Pulsed Gun for FLARE FEL**







Modulation cavity

FLARE gun

#### Grid modulated cathode

Courtesy of Dr. Lex van der Meer, Radboud University, Nijmegen, NL

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019



#### **A Bit of Accelerator Arithmetic**

- At X-ray target average current  $< I > = 75\mu A$  and beam energy E = 8 MeV average beam power < P > = < I > E = 600 W
- As linac operates in pulsed mode at a pulse repetition rate, for example, F = 300 Hz every pulse brings electron charge  $Q_p = {^{<I>}/_F} = 0.25 \mu C = I_p \tau_p$ , where  $I_p$  and  $\tau_p$  average pulse current and duration of the pulse respectively
- For a pulse duration  $\tau_p = 5 \ \mu s$  it gives  $I_p = 50 \ mA$
- Value  $\eta = F\tau_p = 1.5 \cdot 10^{-3}$  is called Duty factor
- Power of the individual beam pulse  $P_p = EI_p = {<P>}/{\eta} = 400 \ kW$
- For gun:
  - Operating in the pulsed mode pulsed cathode current  $I_c = {}^{I_p}/_{\zeta} \ge 100 \text{ mA}$ , where  $\zeta \le 0.5$  caption efficiency
  - Operating in the train-pulsed mode with conduction angle  $\theta_0 = 30^\circ$  peak cathode current  $I_{cp} = I_p \frac{360}{\theta_0} \ge 600 \ mA$

CERN-ICEC-STFC Workshop, Gabrone, Botswana 20-22 March 2019

