

Dosimetry and Verification of Intensity Modulated Radiotherapy: Monolithic Active Pixel Sensors

Outline

- Intensity Modulated Radiotherapy (IMRT)
- Treatment Verification
- Monolithic Active Pixel Sensors
- Leaf position reconstruction
- Radiation Hardness
- Dosimetry with MAPS
- Current status
- Summary

Intensity Modulated Radiotherapy

- In IMRT X-rays from a LINAC typically using multi-leaf collimators (MLC) to form complex beam shapes of varying intensity
- Unlike conventional and 3Dconformal radiotherapy, standard methods of in-vivo dosimetry don't work as the beam portal shape is no longer well defined
- Dosimetry methods have been developed that use either pretreatment or a real-time verification

Treatment verification

- There remains a need for independent verification of RT treatments – which is now mandated in many parts of the world
- Online dosimetry provides verification without pre-treatment measurements
 - Enhances safety
 - Relaxes demand on the accelerator
- Online systems measure two things:
- The collimator positions
- The photon fluence profile

Radiation Offers New Cures, and Ways to Do Harm – NY Times

ublished: January 22, 2010

Fatal Radiation

Software problems and poor quality control at St. Vincent's Hospital cause a fatal overdose.

1 2 3 4 5 6 7 8 NEXT »

March 16, 2005

Mr. Jerome-Parks's medical physicist ran a series of tests on the equipment. All of them showed that the collimator was wide open, and the hospital realized that a serious overdose of radiation had been administered.

February 2007

After two years of declining health, including loss of sight, hearing and balance, Mr. Jerome-Parks, 43, died of his radiation injuries.

Online Verification of IMRT treatments

- Can be done in two ways:
 - Upstream, i.e. transmission dosimetry
 - Downstream i.e. EPID dosimetry
- EPID dosimetry is difficult due to non-uniform and varying interactions in the patient
- Transmission dosimetry systems need to be thin to reduce scattering and attenuation of the beam
- The challenge with the latter is then the separation of the photon fluence from other beam components/ contaminants

Electron-photon separation

- The beam consists of therapeutic photons and contaminant electrons/ positrons
- Current up-stream detector systems use a thick layer to convert photons into the charge particles that are detected
- The number of photons detected needs to significantly outnumber the contaminant particles
- A converter increases the thickness of the device and disturbs the beam

Monolithic Active Pixel Sensors

- MAPS are ideal for upstream monitoring: Thin, have small pixels, and are fast and cheap
- Signal generation is in a thin epitaxial layer (<20µm)
- Bulk is for mechanical support: 30 µm thick detectors are easily constructed < 0.1 % attenuation for 6 MV photons
- Each pixel has in-pixel amplification with high S/N and a fast readout process

Prototypes

- Achilles (STFC developed)
 - 6x6 cm sensor
 - 14 µm thick epitaxial layer
 - 3T pixel architecture with 14 μm pitch
- LASSENA
 - 12 × 14.5 cm sensor
 - 3-side buttable: allows 2 × N tiling
 - 50 µm pitch
 - 32 analogue outputs operating at
 10 Mpixel/sec = 34 fps

MLC leaf-finding

X Sensor Position (Pixels)

1024 x 1024 Gaussian smoothing

with a 15 pixel radius kernel

Exceptional precision is obtained. 52 ± 4 µm in a single frame

Video demonstration of leaf edge finding

Dosimetry with a MAPS

- A conversion layer is used to convert photons into electrons
- We have shown that acceptable accuracy can be achieved for small fields with a thin layer of plastic achieving 5% precision and 1% attenuation
- Better precision can be achieved with a more adventurous converter designs.

Dosimetry with a MAPS

- There are are four signal generating processes
- Modulate of process 4 can be achieved by changing the amount of material upstream of the sensitive layer
- A modulation pattern can be etched in the silicon bulk on the under-side of the detector

Radiation damage

- Fractions are typically 3 Gy
- One machine delivers ~10,000 treatments per year
- Only 10% of the dose is absorbed in the panel, so around 3 kGy per annum
- Sensor was damaged with a variety of doses of protons ranging from 1-50 kGy [needed to achieve this dose range, representing a worst-case scenario
- After 50 kGy no significant signs of degradation to logic and leaf finding
- Will survive long term clinical operation.

Current status

- A patent for transmission dosimetry using MAPS has been granted in the US and Europe
- Have recently applied for second patent for dosimetry
- Working with 2 industrial partners to get the device on the market.
- Currently building a full-size prototype.
- ◆ Team received STFC IPS funding until 31/10/2020
 - Will focus on testing sensor with higher dynamic range
 - Optimization of the converter layer
- The system could monitor the health of the accelerator and collimator systems and through collection at a central data-point assist in machine learning to improve accelerator performance and up-time.

Summary

- We have developed a real-time, thin, upstream beam profile and dose verification device
 - Patent granted in US and Europe
 - Excellent leaf position resolution.
 - Dosimetry is achieved in a thin form-factor using a silicon converter grating
 - Currently building a full size prototype.
- The device can verify treatment in real-time WITHOUT need for prior measurements
 - Enhances safety
 - Relaxes demands on the accelerator

