Permanent Magnets for Beam Delivery

ADAM STEINBERG

UNIVERSITY OF OXFORD (UNDERGRADUATE)

21/03/19

Motivating Questions

What are the *benefits of Permanent Magnets* over electromagnets?

What magnet configuration works best?

Will it work?

Using Permanent Magnets

- Don't consume power
- No water cooling requirement
- No maintenance required

But...

Permanent Magnets alone aren't enough

What Type of Magnet

Focusing: Quadrupoles or solenoids

- Different Magnet Structure
- Different Particle Behaviour

Will It Work?

- Multiple things that could go wrong
 - Magnet Wedge Misalignments
 - Quadrupole Angle Misalignment
 - Transverse / Longitudinal Offsets
 - External Temperature Changes

One of these things is not like the others...

Model Accelerator

RF radius 3mm Quad Gradients: 15, 18.9 T/m
Rest radius 3cm Electron Energy 6MeV

PERMANENT MAGNET BENEFITS MAGNET CONFIGURATION WILL IT WORK?

Angles and Offsets

Temperature Dependence

- When Permanent Magnets get warm, their field strength falls
- Is temperature dependence significant
 - At different times of day?
 - At different locations?

Combined Errors

What if lots of things go wrong at once?

Conclusions

Clear advantage of Permanent Magnets over electromagnets

Quadrupole magnets give good treatment despite internal or external error sources

Next step:

perform a detailed study once parameters are decided

An Unexpected Extra: Magnetic Field of the Earth

