Accelerating the Future: Designing a Robust and Affordable Radiation Therapy Treatment System for Challenging Environments

Issues of Integration & Other Things

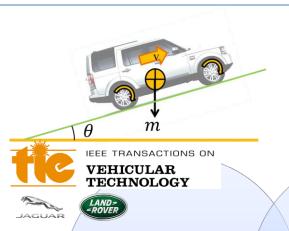
Dr GUIDO HERRMANN, FIET, SenMIEEE
From 1 July 2019 Chair in Robotics & Control at the University of Manchester

- 1. Research and Research Credentials
- 2. Examples of Design / Control in Robotics & Mechatronics
- 3. ? Road Map
- 4. Design Methods
- 5. Conclusions

Professor Stuart Burgess

Bristol Learning, Estimation and Control Team

- In 1993 awarded the UK Turners Gold
- worked at European Space Agency for 5 years mainly working on the ENVISAT (launched in 2002) earth observation satellite which is the largest civilian satellite in the world: lead designer of solar array deployment mechanism including inventing a new type of gearbox - the double action worm gear set (world patent)
- helped in the development and selection of chains and chainrings for the world-beating track bikes: Britain racked up a total of 11 medals in the Olympic velodrome 2016, with every member of the 10-strong track cycling team winning at least one





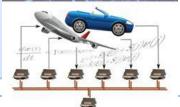
Guido Herrmann - Robotics & Mechatronics

Bristol Learning, Estimation and Control Team

Automotive

Human Robot Interaction

Robotic Control Nano-Precision Technology



TAROS 2017 – Best Poster

Networked Control

IET 2011 Control PhD Award for Dr Stefano Longo

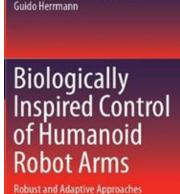
Guido Herrmann - Examples of Control in Robotics

Bristol Learning, Estimation and Control Team

Khan, SG, Herrmann, G, Lenz, A, Al Grafi, M, Pipe, AG & Melhuish, CR 2014, 'Compliance Control and Human-Robot Interaction: Part II - Experimental Examples' International Journal of Humanoid Robotics.

S.G. Khan, G. Herrmann, A.G. Pipe & C.R. Melhuish, Adaptive Multi-dimensional Compliance Control of a Humanoid Robotic Arm with Anti-Windup Compensation, 2010 IROS, Taipei, 2010

Khan, SG, Herrmann, G, Pipe, AG, Melhuish, CR & Spiers, A 2010, 'Safe Adaptive Compliance Control of a Humanoid Robotic Arm with Anti-Windup Compensation and Posture Control' *International Journal of Social Robotics*,


Adam Spiers - Said Ghani Khan

Co-Investigator on £24m, e.g. UKAEA:

National Centre for Nuclear Robotics (NCNR)

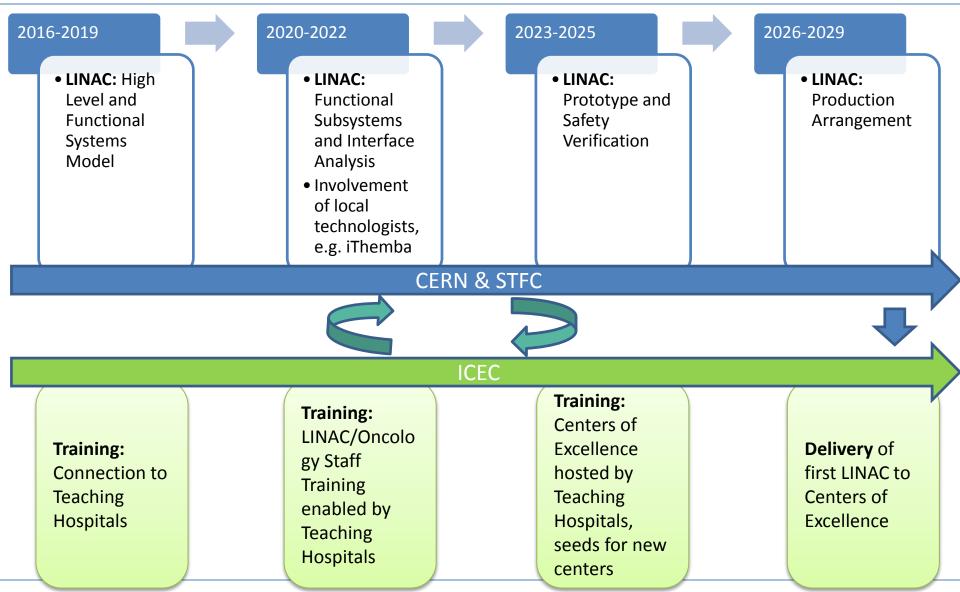
Robotics and Artificial Intelligence for Nuclear (RAIN)

Springer

EP/R02572X/1

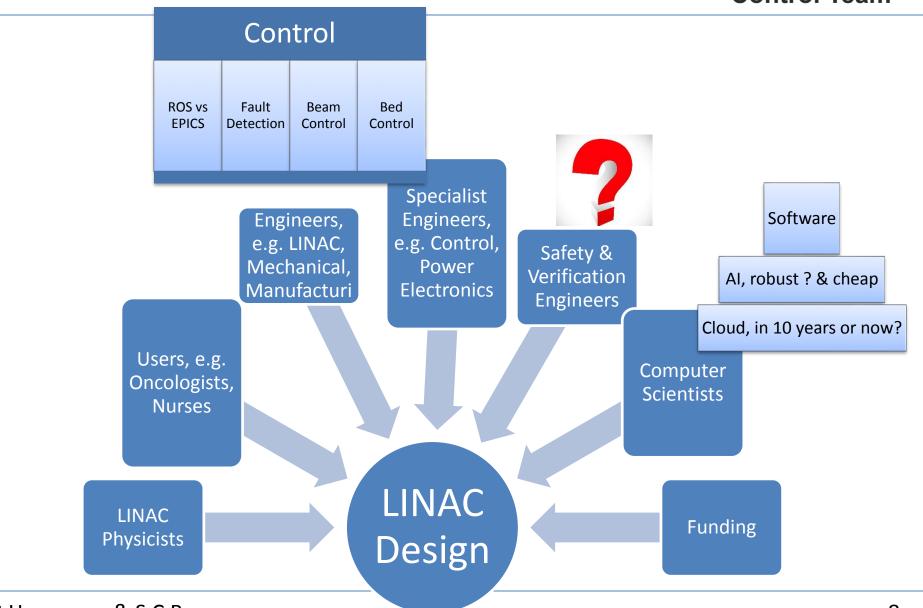
EP/R026084/1

Bristol Learning,


<u>Guido Herrmann – Design & Control in Mechatronics</u> Estimation and
Control Team

De Silva, G., Burgess, S.C., Hatano, T., Khan, S.G., Zhang, K., Nguyen, T., Herrmann, G., Edwards, C. and Miles, M., 2017. Optimisation of a nano-positioning stage for a Transverse Dynamic Force Microscope. *Precision Engineering*, *50*, pp.183-197.

? Road to A Robust and Affordable LINAC


Bristol Learning, Estimation and Control Team

G Herrmann & S C Burgess

? Road to A Robust and Affordable LINAC

Bristol Learning, Estimation and Control Team

Design methods

- (1) High-level systems modelling
- (2) Functional decomposition
- (3) Structured questioning
- (4) Cost modelling
- (5) Interface analysis
- (6) Conceptual design methods
- (7) Prototyping

(1) High-level (soft) systems modelling

To identify the stake holders and the relationships between them (researchers, designers, users, regulators, purchasers, patients etc)

<u>Purpose:</u> to help clarify requirements, relationships and constraints

(2) Functional decomposion

For example morphological charts:

Matrix of sub-functions versus sub-solutions

<u>Purpose</u>: to understand the design and to clarify the design-drivers

Morphological chart for a sports car

Sub functions	Sub-solutions					
Body shape	micro	mini	coupe	hatch	estate	sedan
Engine	IC	Micro Hybrid	Mild hybrid	Full hybrid	Plug in hybrid	Electric
Gearbox	Manual 5g	Automatic	Auto CVT	Man + Auto	Manual 6g	
Drive	Front wheel	Rearwheel	4 wheel drive	2 or 4 wheel		
Suspension	McPherson	Double wishbone	Horizontal pushrod	Active		
Wheels	Steel	Alloy	Wide steel	Wide alum		
Tyres	Standard	Run flat	All terrain	Small section height		
Fuel	Deisel	Petrol	Electric	D + battery	P+ battery	
Battery	Lead acid	Lithium				
Body material	Steel	Aluminium	CFRP			
Chassis	Body on frame	Onibody (monocoque)				
Bumpers	Steel	Aluminium	Plastic	CFRP		
Doors	4 door	4 door hatch	2 door	2 door hatch		

(3) Structured questioning

- Does the machine need to be so compact or light?
- Does the machine need to be so sophisticated?
- Does the machine need to be so accurate or fast?

<u>Purpose</u>: to systematically review the design to look for ways of relaxing or extending the specification as necessary

(4) Cost modelling

- ➤ Identify cost-drivers in the existing design
- Identify alternative cost scenarios

<u>Purpose:</u> to reduce costs

(5) Interface analysis

- > Identify/review existing mechanical and electrical interfaces
- Create more/clearer interfaces to allow for modular design

<u>Purpose:</u> to create modular design to reduce costs

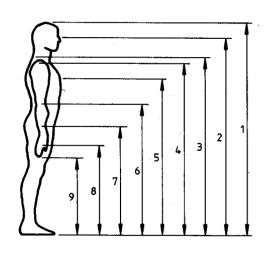
(6) Conceptual design methods

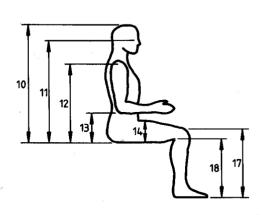
- > Learn from relevant successful examples of cost reduction
- Brain-storming sessions using multi-disciplinary teams
- Backwards design work backwards from an ideal design
- CAD modelling to explore options
- Inversion investigate doing things the other way around (e.g. turn the body not the machine)

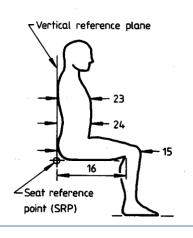
(7) Prototyping

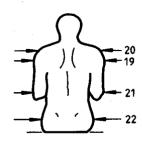
Prototyping of critical areas including hardware-in-the-loop
 (Breadboard model, engineering model, qualification model, etc)

<u>Purpose</u>: speed up the design process

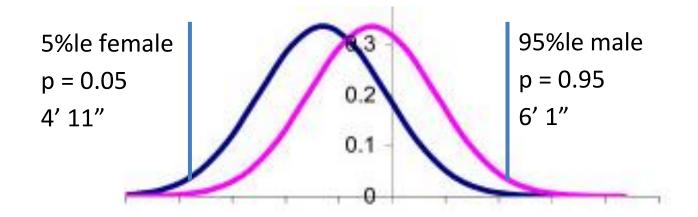

Reference

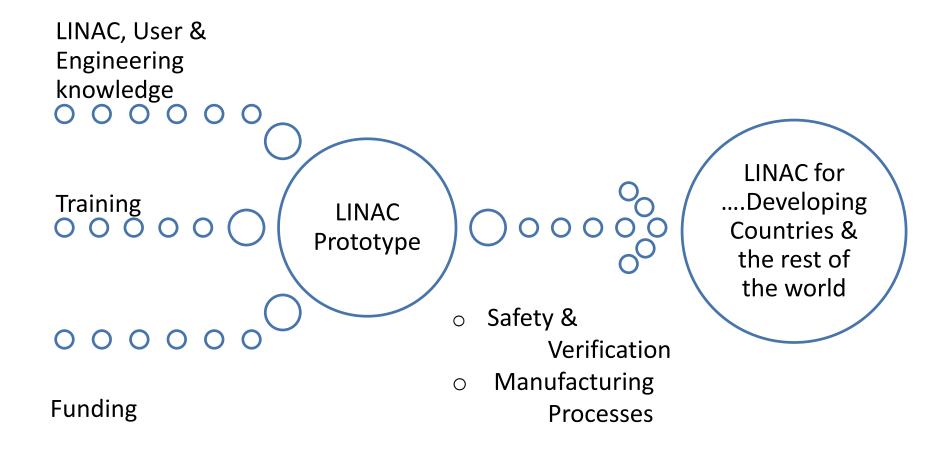

Burgess, SC, A backwards design process for Mechanical Design, Journal of Mechanical Design, ASME, Vol 134, 031002, pp 1-10, March 2012.


Anthropometric data (BS PP 7310) Around 50 dimensions (per male and female)


Bristol Learning, Estimation and Control Team

Data based on "normal distribution"





Common guideline to design for 95%le male/ 5%le female

