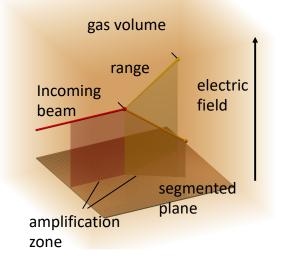


SpecMAT Spectroscopy of exotic nuclei in a Magnetic Active Target

Riccardo Raabe

KU Leuven, Instituut voor Kern- en Stralingsfysica


KU LEUVEN

Riccardo Raabe – KU Leuven

The active-target method

Time-Projection Chamber (TPC)

- + gas is the target
- Full 3D track reconstruction
- High luminosity, keeping energy resolution
- Energy of stopped particles
 Particle identification
- Versatile: different gases, pressures, configurations ancillary detectors

LOI I-119

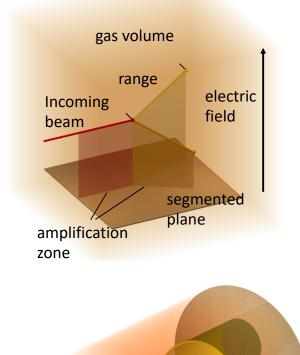
SpecMAT

erc

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Experiments Committee for experiments with HIE-ISOLDE

Direct and resonant reactions using an Active Target

The active-target method


Time-Projection Chamber (TPC)

- + gas is the target
- Full 3D track reconstruction
- High luminosity, keeping energy resolution
- Energy of stopped particles
 Particle identification
- Versatile:

different gases, pressures, configurations ancillary detectors

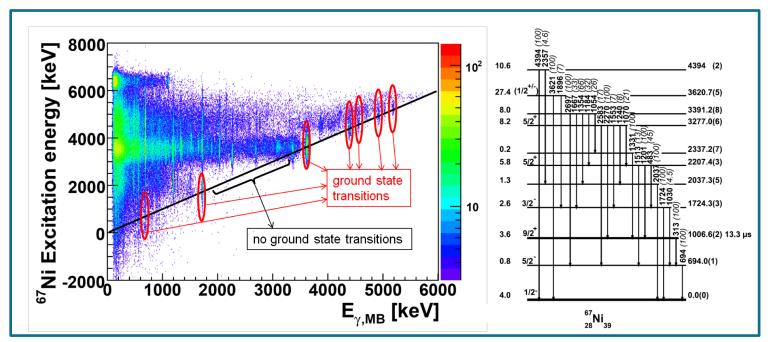
SpecMAT:

- Magnetic field parallel to the beam direction
- Drift field parallel to magnetic field

KU LEUVEN

Riccardo Raabe – KU Leuven

The active-target method


γ -ray detection

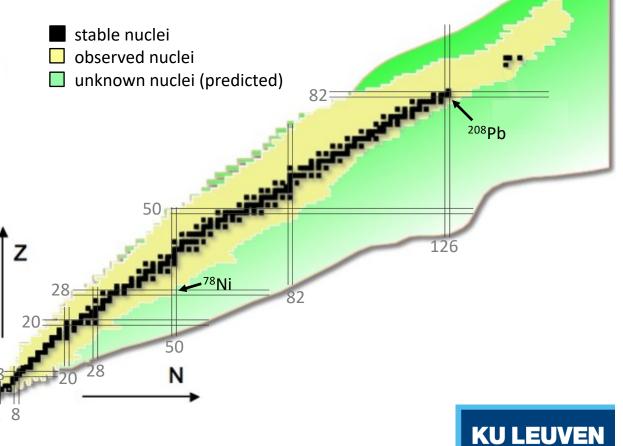
- CeBr₃ scintillators: good efficiency and resolution
- Si photomultipliers

J. Diriken et al., PLB 736, 533 (2014) J. Diriken et al., PRC 91, 054321 (2015)

SpecMAT

erc

Active targets



Physics goals

- What are the **forces driving the shell structure in nuclei and how do they change** in nuclei far from stability?
- What remains of the Z = 28 and N = 50 "magic numbers" in ⁷⁸Ni?
- Do we understand **shape coexistence in nuclei**, and what are the mechanisms controlling its appearance?

Changes in nuclear structure far from stability

- Shell evolution towards ⁷⁸Ni
- Shape coexistence "west" of ²⁰⁸Pb

SPECMAT CCC European Research Cour Established by the European Commit

Shell evolution towards ⁷⁸Ni

 Migration of πf_{7/2}, πf_{5/2} as vg_{9/2} is filled (tensor interaction)

68Zn	69Zn	70Zn	71Zn	72Zn	73Zn	74Zn	75Zn	76Zn	77Zn	78Zn	79Zn	80	Zn	81Zn
67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79	Cu	80Cu
												_	_	
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Nï	
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
66Ni 65Co	67Ni 66Co	68Ni 67Co							75Ni 74Co		77Ni	78	Ni	
		-									77Ni	78	Ni	

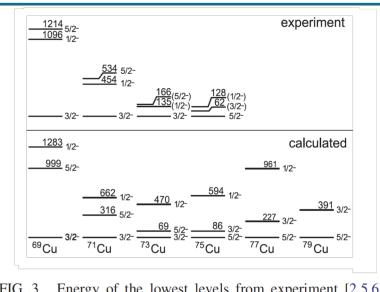


FIG. 3. Energy of the lowest levels from experiment [2,5,6] compared to large-scale shell-model calculation [25].

K. Flanagan et al., PRL 103 (2009) 142501

KU LEUVEN

Riccardo Raabe – KU Leuven

Status-Planning OOOOOO

SPECMAT CONTRACTOR European Research Court Established by the European Commis

Shell evolution towards ⁷⁸Ni

 Migration of πf_{7/2}, πf_{5/2} as vg_{9/2} is filled (tensor interaction)

68Zn	69Zn	70Zn	71Zn	72Zn	73Zn	74Zn	75Zn	76Zn	77Zn	78Zn	79Zn	80	In	81Zn
67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79	Cu	80Cu
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
66Ni 65Co	67Ni 66Co	68Ni 67Co	69Ni 68Co			72Ni 71Co					77Ni	78	Ni	
		-									77Ni	78	Ni	



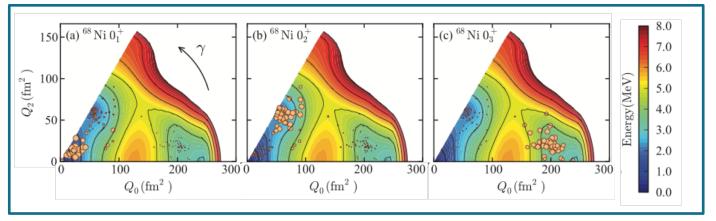
FIG. 3. Energy of the lowest levels from experiment [2,5,6] compared to large-scale shell-model calculation [25].

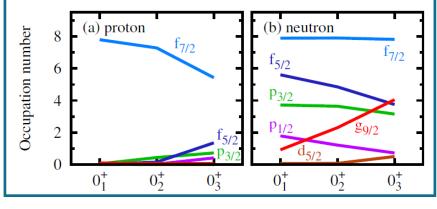
K. Flanagan et al., PRL 103 (2009) 142501 Proposal P-495: 72,74,76 Zn(d,³He) to directly measure the f_{7/2}-f_{5/2} gap

LOI I-191

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee (Following HIE-ISOLDE proposal INTC-P-495)

Single-particle proton states in ⁶⁹Cu


KU LEUVEN


Riccardo Raabe – KU Leuven

SpecMAT Control of the second second

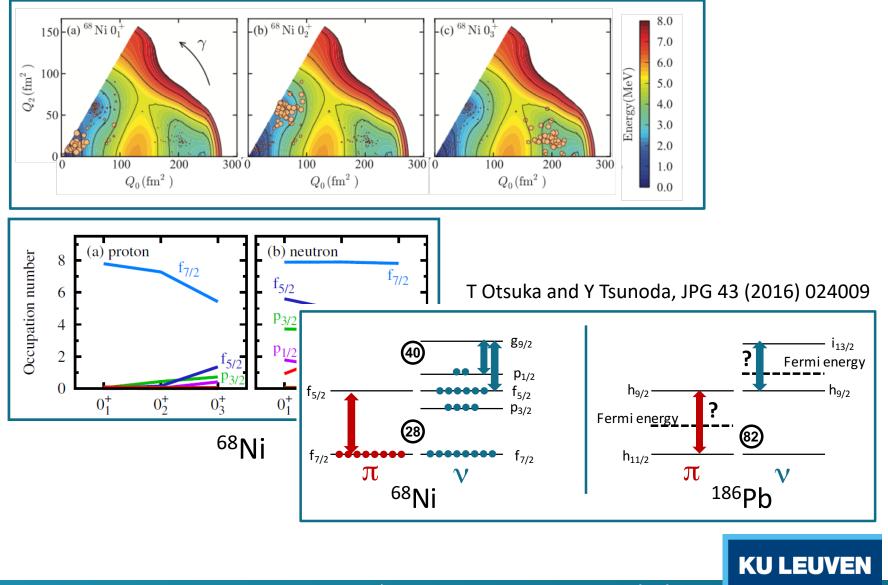
Shell evolution and shape coexistence

Y Tsunoda, T Otsuka et al., PRC 89 (2014) 031301

⁶⁸Ni

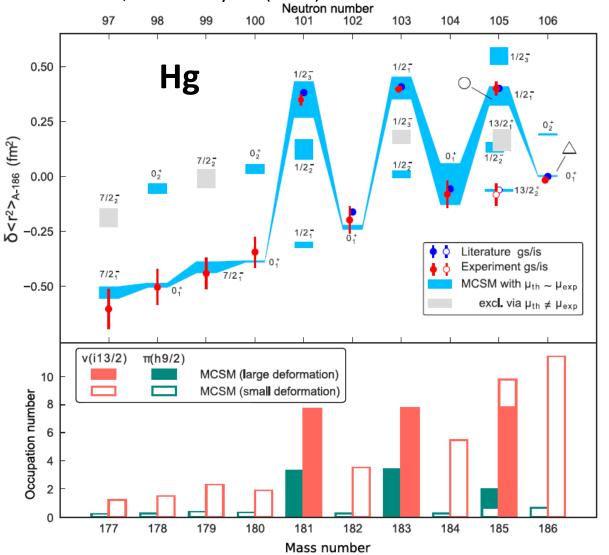
KU LEUVEN

Riccardo Raabe – KU Leuven

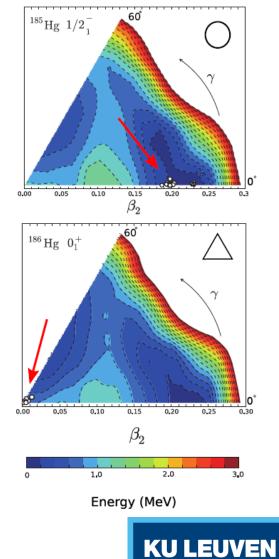

Status-Planning OOOOOO

SpecMAT

erc


Shell evolution and shape coexistence

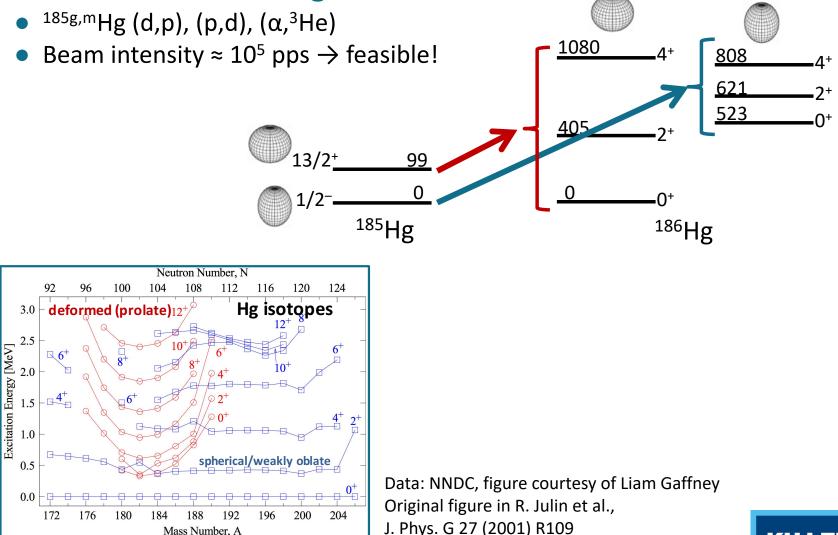
Y Tsunoda, T Otsuka et al., PRC 89 (2014) 031301



The n-deficient Pb region

B A Marsh et al., Nature Physics (2018)

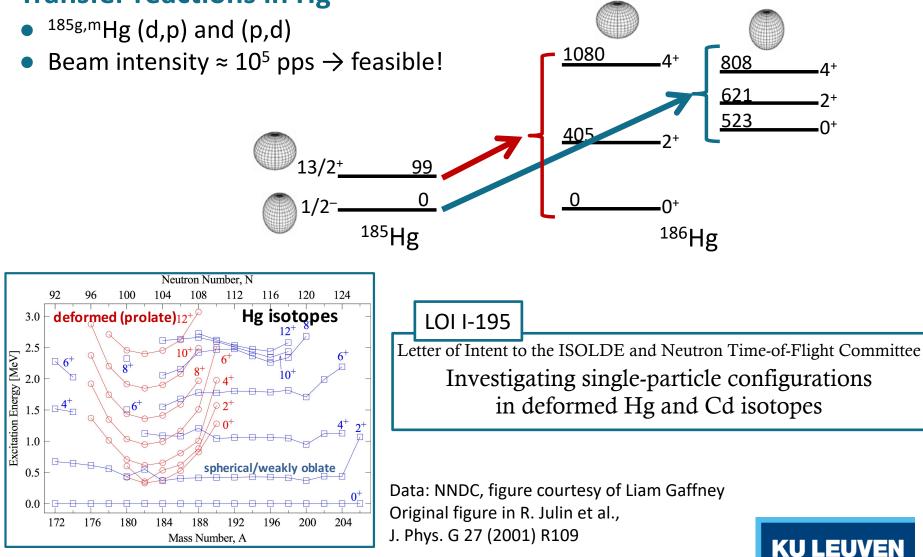
Riccardo Raabe – KU Leuven


Status-Planning OOOOOO

The n-deficient Pb region

KU LEUVEN

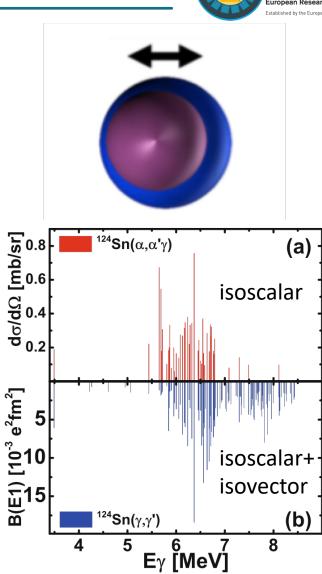
Transfer reactions in Hg



Riccardo Raabe – KU Leuven

The n-deficient Pb region

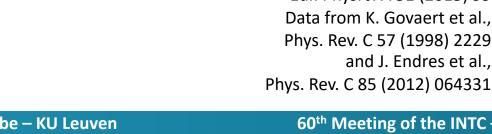
Transfer reactions in Hg


Riccardo Raab<u>e – KU Leuven</u>

Study of the Pigmy Dipole Resonance

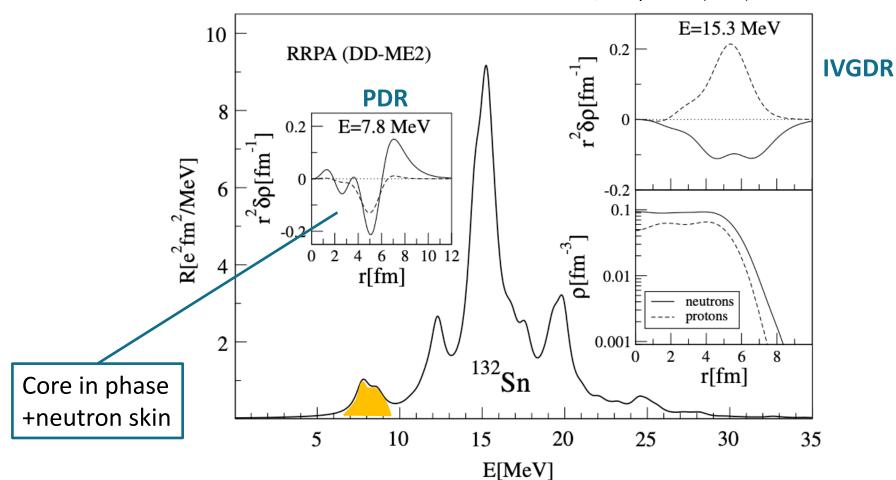
Low-energy dipole strength

- First observation in 1961 γ rays from neutron capture G.A. Bartholomew, Annu. Rev. Nucl. Sci. 11 (1961) 259
- First use of "pygmy resonance" (PDR) J.S. Brzosko et al., Can. J. Phys 47 (1969) 2849
- Description as a collective excitation Mohan et al., Phys. Rev. C 3 (1971) 1740 "Three-Fluid Hydrodynamical Model of Nuclei": Neutron excess oscillates against the N=Z core
- Different experimental probes to investigate the isospin nature of these states


Figure A. Bracco et al., Eur. Phys. J. A 51 (2015) 99 Data from K. Govaert et al., Phys. Rev. C 57 (1998) 2229 and J. Endres et al.,

KU LEUVEN

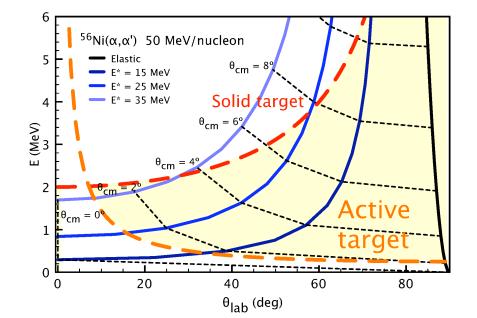
SpecMAT


erc

Status-Planning OOOOOO

Study of the Pigmy Dipole Resonance

D. Vretenar et al., J. Phys. G 35 (2008) 014039


SpecMAT Curopean Research Counce Established by the European Commission

KU LEUVEN

Study of the Pigmy Dipole Resonance

- Isoscalar probe:
 (α,α') inelastic scattering
- SpecMAT:

 γ rays from decay of bound states

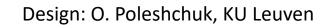
LOI I-194

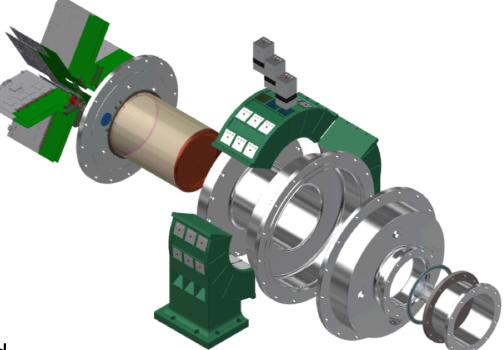
Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Study of the Pygmy Dipole Resonance using an Active Target

Cases: ⁹⁰Sr, ¹⁹⁴Hg, ^{146,148,150}Gd
 ≈10 MeV/nucleon

Riccardo Raabe – KU Leuven


Active targets


Status

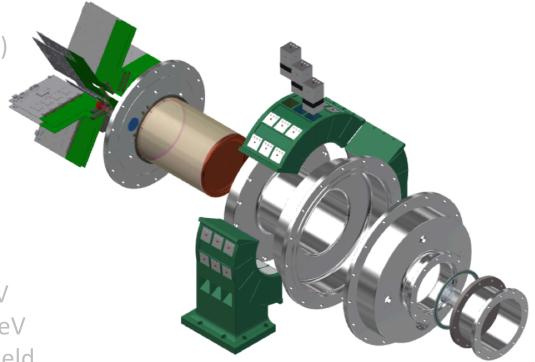
 GET Electronics (2048 channels): purchased and commissioned

Physics cases

- Pad plane and field cage designed in CERN (EP-DT-DD MPT) to be ordered shortly
- Chamber finalized and ordered
- Scintillators + SiPMs purchased, commissioning ongoing 48x48x48 mm³
 Photopeak efficiency 8% at 1 MeV
 Nominal resolution 3.9% at 661 keV
 No degradation in 3-T magnetic field

Status-Planning **O**OOOO

Active targets

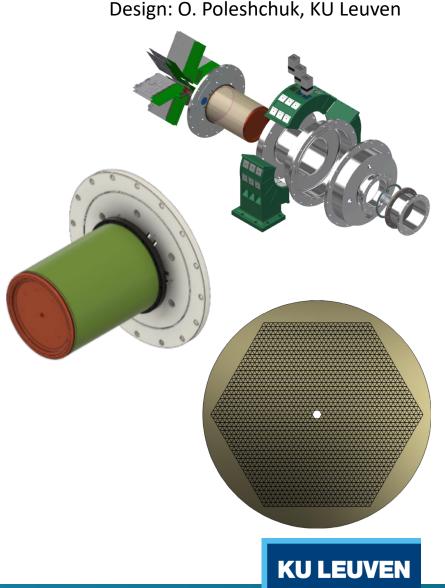

Status

GET Electronics (2048 channels): purchased and commissioned

Physics cases

- Pad plane and field cage designed in CERN (EP-DT-DD MPT) to be ordered shortly
- Chamber finalized and ordered
- Scintillators + SiPMs purchased, commissioning ongoing 48x48x48 mm³
 Photopeak efficiency 8% at 1 MeV
 Nominal resolution 3.9% at 661 keV
 No degradation in 3-T magnetic field

Status-Planning **O**OOOO



Physics cases •••••••

Status

- GET Electronics (2048 channels): purchased and commissioned
- Pad plane and field cage designed in CERN (EP-DT-DD MPT) to be ordered shortly
- Chamber finalized and ordered
- Scintillators + SiPMs purchased, commissioning ongoing 48x48x48 mm³
 Photopeak efficiency 8% at 1 MeV
 Nominal resolution 3.9% at 661 keV
 No degradation in 3-T magnetic field

GET Electronics (2048 channels): purchased and commissioned

Physics cases

- Pad plane and field cage designed in CERN (EP-DT-DD MPT) to be ordered shortly
- Chamber finalized and ordered
- Scintillators + SiPMs purchased, commissioning ongoing 48x48x48 mm³ Photopeak efficiency 8% at 1 MeV Nominal resolution 3.9% at 661 keV No degradation in 3-T magnetic field

Simulations for:

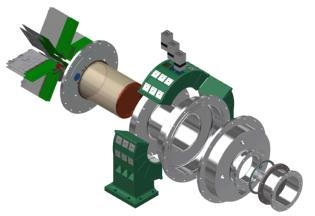
electric field, mechanical stress, gas flow

KU LEUVEN

Design: O. Poleshchuk, KU Leuven

erc

Status

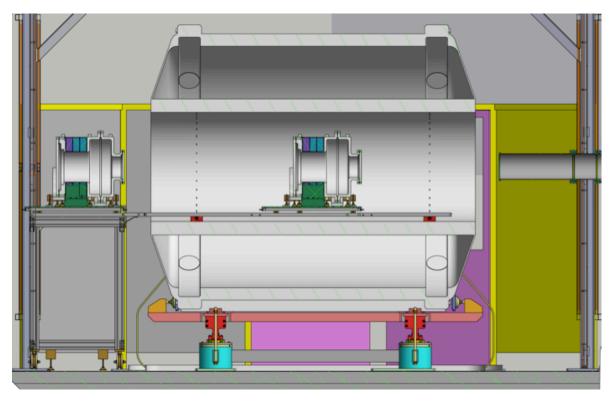

<u> Riccardo Raabe – KU Leuven</u>

Status

- GET Electronics (2048 channels): purchased and commissioned
- Pad plane and field cage designed in CERN (EP-DT-DD MPT) to be ordered shortly
- Chamber finalized and ordered
- Scintillators + SiPMs purchased, commissioning ongoing 48x48x48 mm³ Photopeak efficiency 8% at 1 MeV Nominal resolution 3.9% at 661 keV No degradation in 3-T magnetic field

Design: O. Poleshchuk, KU Leuven

Status-Planning



Installation

- Installation through a platform and rails from the back of the ISS
- Cables (8m) running to the electronics racks outside the cage
- To be coordinated with the installation of the new ISS array

Planning

January – March 2019: characterisation of the full system

- Characterisation of the γ -ray array
- Leak tests of the detector chamber
- Commissioning of the gas control system
- Tests of the electric field cage
- Characterisation of particle tracks

2019 Move to CERN

- Safety clearance
- Installation

Summary

Thanks to the SpecMAT team!

A. Arokja Raj, H. De Witte, O. Poleshchuk, J. Refsgaard, M. Renaud, J. Yang With us in the past: S. Ceruti, M. Babo, T. Marchi, C. Swartz

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 617156

