Towards a Planetary Neutrino Monitoring System

XVIII International Workshop on Neutrino Telescopes - Venezia -
18-22 of March, 2019

Elisa Resconi

&

ECP team, UofA, ONC-UofVic

Image: K. Krings (TUM)
For the first high energy neutrino source: 8 years of exposure from 1km³ Neutrino Telescope -IceCube- under ideal detector conditions.
What do we need in order to open the cosmic neutrino sky to more *routine* observations?
What do we need in order to open the cosmic neutrino sky to more routine observations?

More OBSERVERS
*Planetary neutrino monitoring
THE AFTERMATH OF TXS 0506+056

1) ICECUBE-170922A: HORIZONTAL ALERT [~290 TEV, DEC ~5.72 DEG]

“Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A”, The IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool telescope, Subaru, Swift/NuSTAR, VERITAS, and VLA/17B-403 teams. Science 361, 2018
THE AFTERMATH OF TXS 0506+056: WHY AT THE HORIZON?

AT HIGH ENERGY THE EARTH IS OPAQUE TO NEUTRINOS

THE FIELD OF VIEW OF NTs (>50 TeV): THE HORIZON

ICECUBE FIELD OF VIEW AT HIGH ENERGIES (>50 TeV)
ABOUT 1/3 OF THE SKY COVERED

M. Huber (TUM)
THE AFTERMATH OF TXS 0506+056: IS A BLAZAR
TXS0506+056 IS AN INTERMEDIATE BLAZAR
→ EXPECTED NEUTRINOS FROM BLAZARS AT HIGH ENERGY

ICECUBE-170922A

THE AFTERMATH OF TXS 0506+056: IS A BLAZAR

TXS0506+056 NEUTRINO CONTRIBUTION TO THE DIFFUSE: SMALL

→ MUCH MORE TO DISCOVER OUT THERE!!

see talk from Hans Niederhausen

M. Huber (TUM)
THE FRONTIER: A PLANETARY NEUTRINO MONITORING SYSTEM

- IceCube
- GVD, Russia
- KM3NeT, Sicily
- ONC, Canada
- Galactic center/plane
- TXS 0506+056

M. Huber (TUM)
ASSUME ONE ICECUBE @ BAIKAL, @ CAPO PASSERO, @ OCEAN NETWORK CANADA

IceCube acceptance
≡ \int_0^\infty A_{\text{eff}}(\delta, E) \cdot E^{-\gamma} dE

on going study by M. Huber (TUM)
ICECUBE & BAIKAL & CAPO PASSERO & OCEAN NETWORK CANADA

RELATIVE IMPROVEMENT VS ICECUBE HORIZON BEST SENSITIVITY

on going study by M. Huber (TUM)
RELATIVE IMPROVEMENT VS ICECUBE ALL SKY

ICECUBE & BAIKAL & CAPO PASSERO & OCEAN NETWORK CANADA

$\propto E^{-2.0}$

on going study by M. Huber (TUM)
On-going study by M. Huber (TUM)
* … in a plenum, there are no empty places.
(Bertrand Russell)
NEW ENTRY ON THE NEUTRINO MAP - @ONC
STRAW PATHFINDER DEPLOYED IN 2018, DATA TAKEN ON-GOING
ONC (U. VICTORIA), U. OF ALBERTA, QUEEN’S U., TU MUNICH

Huge volume available and (partly) cabled

Water properties ~ Antares

see Imma Rea’s poster, this conference
NEW ENTRY ON THE NEUTRINO MAP - @ONC
STRAW-B PATHFINDER II: DEPLOYMENT IN 2020
ONC (U. VICTORIA), U. OF ALBERTA, QUEEN’S U., TU MUNICH

Test longer mooring (500m) and specialised devices.
NEW ENTRY ON THE NEUTRINO MAP – @ONC

CONCEPTUAL DESIGN FOR 10 STRINGS BUNDLE AND FUTURE
ONC (U. VICTORIA), U. OF ALBERTA, QUEEN’S U., TU MUNICH

GVD style approach of cluster of strings.

10 strings bundle
V = ~0.1km³

70-100 strings
V = ~2km³

PRELIMINARY geometry
NEW ENTRY ON THE NEUTRINO MAP - @ONC
BRAINSTORMING AROUND A SEGMENTED DETECTOR FOR HE HORIZONTAL TRACKS
→ STARTING UP CONCEPTUAL DESIGN

rectangular bundle

Water model from Antares

\[E_{\nu} = 50 \text{ TeV}, E_{l, \text{vertex}} = 28 \text{ TeV} \]

pentagonal bundle

\[E_{\nu} = 50 \text{ TeV}, E_{l, \text{vertex}} = 28 \text{ TeV} \]

Study on going from K. Krings (TUM)
NEW ENTRY ON THE NEUTRINO MAP – @ONC

STARTING UP CONCEPTUAL DESIGN

~500 strings
V = ~50km³
IN SUMMARY

Thanks to IceCube stable operation over many years *neutrino astronomy is becoming a reality.*

The aftermath of the first association between neutrinos and TXS0506+056:

- **Blazars** are viable HE neutrino sources and so far the only;
- Neutrino signal from blazars most probably **100 TeV - 100 PeV**;
- Neutrino absorption in the Earth significant effect, **field of view at the horizon**.

Need of **more neutrino telescopes** around the planet Earth to cover the sky.

With 3 IceCubes in the North overall improvement by a factor of 5: strong **synergy**.

New collaboration established with **Ocean Network Canada** for a possible neutrino telescope in the Pacific ocean - might give new insights into deep sea operations.
IN SUMMARY

“Contrappunto bestiale alla mente” - Adriano Banchieri

Thanks to IceCube stable operation over many years neutrino astronomy is becoming a reality.

- Blazars are viable HE neutrino sources … and so far the only;
- Neutrino signal from blazars most probably 100 TeV - 100 PeV;
- Neutrino absorption in the Earth significant effect, field of view at the horizon.

Need of more neutrino telescopes around the planet Earth.

With 3 IceCubes in the North overall improvement by a factor of 5: strong synergy.

New collaboration established with Ocean Network Canada for a possible neutrino telescope in the Pacific ocean - might give new insights into deep sea operations.

We need neutrino telescopes in WATER as „counterpoint“ to the IceCube present and future theme.
some conclusions
NEW ENTRY ON THE NEUTRINO MAP - PLENUM@ONC

BRAINSTORMING AROUND A SEGMENTED DETECTOR FOR HE HORIZONTAL TRACKS

medium: IceCube ice

1 PeV muon

medium: Antares water

K. Krings (TUM)
NEUTRINO INTERACTION CHANNEL - MUON TRACKS

~1KM: SHORT FOR HIGH ENERGY MUONs

Muon path length (1PeV) = ~20 km
Muon path length (10PeV) = ~25 km
NEW ENTRY ON THE NEUTRINO MAP - PLENUM@ONC

BRAINSTORMING AROUND A SEGMENTED DETECTOR FOR HE HORIZONTAL TRACKS

medium: IceCube ice

medium: Antares water

1 PeV muon

K. Krings (TUM)
A History of Neutrino Astronomy in Antarctica

IceCube and MM partners first association to a source

IceCube discovery of diffuse astrophysics neutrinos
PLE\textsubscript{\textnu M}

ICECUBE & BAIKAL (OR ANOTHER SINGLE SITE IN THE NORTH)

→ RELATIVE IMPROVEMENT VS ICECUBE HORIZON BEST SENSITIVITY

GVD only

GVD+IceCube / IceCube horizon

on going study by M. Huber (TUM)
RELATIVE IMPROVEMENT VS ICECUBE HORIZON BEST SENSITIVITY

IceCube vs Gen2

IceCube vs Gen2+GVD+KM3NeT+ONC

on going study by M. Huber (TUM)