

Neutrino telescopes in water:

Real-time and multi-messenger program (Northern Hemisphere)

Maurizio Spurio
Università di Bologna and INFN
maurizio.spurio@unibo.it

Open questions for neutrino astrophysics

- Origin of IceCube HE astrophysical neutrinos
- Disentangle astrophysical models with multimessenger observations: i.e., GRBs with GW, HEN and traditional astronomy (useful also in case of no ν observation)
- Production mechanisms of high energy cosmic particles
- Study of galactic (and extra galactic?) propagation of CR with neutrinos as tracers
- Test the neutrino sector of the SM and BSM physics
- Cosmic rays (p and nuclei): evidence of galactic "TeVatron" from γ -rays. No "LHC" o "PeVatrons" observed
- Neutrino: fundamental probe to identify galactic and extragalactic CR sources

Neutrino telescopes in water

- Very high duty cycle
- Large observation **solid angle** (2π or 4π : different angular resolution, depending on background rejection)
- Upgoing events: Adequate angular resolution, depending on the ν direction, medium and track/shower (0.1° \rightarrow 3° -4°)
- Optimization for E_v<100 TeV
- Neutrinos not significantly absorbed by Earth for E_v <100 TeV
- Complementary f.o.v. for Mediterranean and South Pole detectors. Most of the Galactic plane seen as "upgoing events"
- Online analysis, fast response (few seconds), immediate alert
- Water is an homogeneous medium
- Optical activity due to ⁴⁰K and bioluminescence
- Water detectors: need for positioning calibrations due to sea currents (offline analysis)

ANTARES in numbers:

- Stable data taking since 2008 with high duty cycle (93-96%)
- Large field of view (2π instantaneously, upgoing)
- Quite good angular resolution: 0.3°-0.4° (median)
- But it is also small: $A^{eff} \approx 1 \text{m}^2 @ 30 \text{ TeV} [O(12000) \text{ detected } v's]$

Positioning of the detector

- Transceivers on the bottom of each line
- 5 hydrophones at specific heights on each line
- 4 autonomous transponders around the apparatus
- Sound velocimeters installed at various depths
- Tiltmeter and compass at each storey
- Measurements performed every 2 minutes

Detecting cosmic neutrinos: a threefold way

- 1. Excess of HE neutrinos over the background of atmospheric events. Estimate of the neutrino energy (shower-dominated).
- No real improvement expected w.r.t. IceCube

- Point-like events, excess in the sky map. Rely on the precision of the neutrino direction (track-dominated) and background suppression.
- Unsurpassable sensitivity for Galactic sources for E_v <100 TeV and part of the Southern sky
- 3. Coincident event in a restricted time/direction windows with EM/ γ /GW counterparts. Relaxed energy/direction measurement + transient/ multimessenger information
- Real complementarity w.r.t. IceCube

The CR, gamma and neutrino connection

Cosmic rays and atmospheric neutrinos

Cosmic rays and atmospheric neutrinos

- PeVatrons in our Galaxy?
- Disantangle among lepton and hadrons not assured with γ-rays alone
- CR origin of the v signal near source, origin of the v background on Earth!

Detecting v (I): the effective area A^{eff}

- Large background
 - Downward going atmospheric muons
 - Irreducible: atmospheric neutrinos
- Two event topologies in detectors: (t)racks, (s)howers
- Effective area A^{eff} = function[(t,s); v energy; analysis cuts; δ]

Detecting v (II): the angular resolution $\Delta \psi$

- $A^{eff} = function[(t,s); v energy; analysis cuts, \delta]$
- Angular resolution $\Delta \psi = function[(t,s); medium; v energy]$
- Only tracks (=upgoing events) reach sub-degree angular resolution

Detecting v (III): the sensitivity (SED units)

- $A^{eff} = function[(t,s); v energy; analysis cuts, \delta]$
- $\Delta \psi = function[(t,s); medium; v energy]$
- Sensibility=function(A^{eff}; Δψ; ν energy)

Northern sky Hemisphere

IceCube, ApJ835:151 (2017)

Southern sky Hemisphere

arXiv:1902.05792v1

Why we do not have a "neutrino map"?

Multi-wavelength observation: RXJ 1713.7

H.E.S.S. Collaboration: Observations of RX J1713.7-3946

2018 A&A, 612, A6

Galactic region: γ measurements and ν sensitivity

U.L. and Sensitivities (also $E_v < 100 \text{ TeV}$)

Note: these plots depend on the

- assumed spectral index of the source
- differential **energy sensibility** of the detector

CR propagation in the Milky Way: γ and ν .

- Dense matter regions boost γ and ν fluxes
- Models can be tuned to γ and CR observations

Northern Hemisphere optimal point of view for galactic CRs-60°

+15'

24h

ANTARES+ IceCube from GP

(ANTARES) PRDD96 (2017) 062001 ANTARES+IC, ApJ 868:L20 (2018)

Combined U.L. at 90% CL (blue line) on the 3-flavor neutrino flux of the KRA \u03c4 model (5-50 PeV cutoff)

Result: total flux contribution of **diffuse Galactic neutrino** emission <8.5% of the total diffuse IC astrophysical signal ($E_1 > 30$ TeV) [ApJ 809:98(2015)].

Stacked expected signal vs. δ (top) and energy (bottom). Colors represents the relative contribution to the sensitivity

Mediterranean vs. South Pole telescopes

- Most galactic sources produce upgoing events in the "golden channel" (v_{μ})
- Sub-degree angular resolution for upgoing events
- KM3NeT: OM segmentation with small PMTs (further background reduction)
- Larger depth (~2.5 km for ANTARES, ~3.5 km for KM3NeT/ARCA) allows larger reduction of atmospheric muons
 - Signal/background $\propto \Delta \theta^{-2}$
 - Looser cuts select more lowenergy events
 - Lower scattering in water w.r.t. ice → better angular resolution Δθ;

Multimessenger: two approaches

 Looking in the neutrino data stream in real time or in offline for space/time correlation: IceCube neutrinos, LVC gravitational waves, PARKES/UTMOST/ASKAP fast radio bursts, Swift/Fermi gamma-ray bursts, Fermi/IACT blazars...

 Reconstructing and selecting the most interesting neutrinos in realtime and send the direction to EM partners.

ANTARES online system (past and present)

KM3NeT improved version

ANTARES neutrino alerts > KM3NeT

Radio	Optical	X-ray	GeV γ-rays	TeV γ-rays	
EM frequency/γ energy					
MWA	TAROT, ZADKO MASTER, GWAC	Swift INTEGRAL	Fermi	HESS HAWC	

ANTARES real time alerts:

- Time to send an alert: ~5 s
- Track median angular resolution: 0.4°
- Doublet of neutrinos: ~0.04 events/yr
- Single neutrino with direction close to local galaxies: ~1 TeV, ~10 events/ yr
- Single HE neutrinos: ~5 TeV, 20 ev/ yr
- Single VHE neutrinos: ~30 TeV, ~3-4 ev/yr

Sent neutrino alerts

(2009-2018)

281 to robotic telescopes

+15 to INTEGRAL

+22 to MWA (radio)

+2 to H.E.S.S.

APP 35 (2012)530, JCAP 02 (2016) 062

Croft S. et al, ApJ 820 (2016) 24

TXS 056+056: ANTARES follow-up

- Direction in ANTARES of IC170922A: 14.2° below horizon.
- Online algorithm \rightarrow No v candidate in a cone of 3° within ±1 h (ATEL #10773), ± 1 day
- v fluence upper limit set for E⁻² (F< 15 GeV cm⁻² integrated from 3 TeV-3 PeV)
- Time-integrated analysis as other 106 sources as in [PRD96, 082001]
- Expected background in 3136 days:
 - 0.23/deg² for track-like
- 1 track (12/12/2013) 0.3° from source (# fitted events: μ_{sig} = 1.03).
- Pre-trial p-value 3.4% (post-trial 87%)
- Flux U.L. (@100 TeV) for E⁻²: 1.6x10⁻¹⁸
 GeV⁻¹ cm⁻² s⁻¹ in [2 TeV-4 PeV]
- In the list of 107 pre-selected sources, only two have smaller pvalue

Distribution of the 13 tracks +1 shower events around $(=1^{\circ} \text{ and } 5^{\circ})$ TXS 0506+056. The dashed circles indicate the angular error estimate of each event..

ApJ 863:L30 (2018)

Searching for HEN from BBH coalescences (O1-O2)

HEN emission coincident with GW signals expected?

If hadronic/magnetic environment

- Online neutrino searches (ANTARES/IceCube) for every GW alert during O2: results to LIGO/Virgo on private GCN
- Offline optimized event-by-event searches for
 - GW150914: HEN emission<20% of GW energy;
 - **GW151226+LVT151012**: HEN <1-15% of GW energy;
 - **GW170104**: first full sky search, optimization.
 - **O1** sub-threshold events

PRD93 (2016) 122010

PRD96 (2017) 022005

EPJC 77(2017) 911

ApJ 870:134(2019)

Binary NS Mergers and HEN?

- Prompt neutrino production on-axis
- Off-axis scenario, neutrino-production related to the extended γ -ray emission (Kimura et al. 2017).
- (Later) Extended emission from a relativistic wind with its rotational energy, (Fang&Metzger. ApJ 2017).

GW170817

v?

ApJL 850:L35 (2017)

(multimessenger): ApJL 848 L12 (2017)

Next GW + HEN observations

Exciting period ahead for Multi-Messenger Astronomy

- Run O3 will start early 2019. Possibly several alerts/week
- Neutrino follow-ups: ANTARES (up to early 2020), KM3NeT (2020), IceCube
 + AUGER + BAIKAL

- Neutrino catalog: needs the use of the "golden channel" $(=v_u$ CC interactions). Full KM3NeT for Galactic sources!
- Waiting for larger detectors (IceCube gen2, GVD) and with better angular resolution (KM3NeT), first neutrino sources discovered also with the help of **transient phenomena**
- ANTARES Trigger alert: Very performant and efficient alert sending system → Able sending in ~5s with a precision of 0.3°-0.4° (3 different neutrino triggers)
- KM3NeT improvement of calibrations
- Patience!

Multimessenger transient: space and time 🔆 🕡

Gravitational Waves (GW) + HE Neutrinos (HEN)

ANTARES (2020)- KM3NeT(>2020)

Field-of-view: 2π sr

Angular resolution:

- <0.5° (tracks)
- 2°-3° (showers)

Multimessenger

ANTARES Multimessenger program

- A way to better understand the related physics mechanisms
- A way to increase the detector sensitivities

Up to July 2017:

- → 256 alerts sent
- → 13
- \rightarrow 2
- \rightarrow 20

Real-time (follow-up of the selected neutrino events):

- optical telescopes [TAROT, ROTSE, ZADKO, MASTER]
- X-ray telescope [Swift/XRT]
- GeV-TeV γ-ray telescopes [HESS, HAWC]
- radio telescope [MWA]
- Online search of fast transient sources [GCN, Parkes]
 Multi-messenger correlation with:
- Gravitational wave [Virgo/Ligo]
- UHE events [Auger]

Time-dependent searches:

- GRB [Swift, Fermi, IPN]
- Micro-quasar and X-ray binaries [Fermi/LAT, Swift, RXTE]
- Gamma-ray binaries [Fermi/LAT, IACT]
- Blazars [Fermi/LAT, IACT, TANAMI...]
- Crab [Fermi/LAT]
- Supernovae Ib,c [Optical telescopes]
- Fast radio burst [radio telescopes]

ANTARES multimessenger and transients

Object(s)	Messenger	Telescope
Flaring Blazars	γ-rays	FERMI/LAT
Flaring X-ray binaries	X & γ-rays	Swift, MAXI, RXTE/ASM, Fermi/LAT
Flares from Mrk 421 and Mrk 501	γ-rays (TeV)	HAWC
HAWC 2-year catalog	γ-rays (TeV)	HAWC
Gamma Ray Bursts	γ-rays	Swift, Fermi, GCN
IceCube Events	ν	IceCube
UHECR	CRs	Auger, TA
Galactic Plane	CR & γ-rays	Fermi, Milagro
Fast Radio Bursts	Radio	SUPERB@Parkes
Fermi Bubbles	γ-rays	Fermi
Galactic Plane	CRs	HAWC
BH/NS mergers	Gravitational waves + EM + γ -rays+ ν	Ligo/Virgo (+ IceCube and Pierre Auger Observatory)

The FRB sky (http://www.astronomy.swin.edu.au/pulsar/frbcat/)

What FRBs are?

- Distance: same history of GRBs before Beppo-SAX
- Distance: dispersion measure DM*. Cosmological distances *total column density of free electrons between the observer and the source
- Identification of host Galaxy: only one case FRB121102*
 - White dwarf at z=0.19
- Repetition: only one case FRB121102, no other EM counterparts
- Progenitors: nearby extragalactic origin (100-200 Mpc)
 - Supergiant flares in the magnetosphere of young (<100 y) and fast (ms) rotating NS embedded in a dense environment
- Progenitors: cosmological origin (1-20 Gpc)
 - Massive NS's collapse: magnetic blast wave, shock front within the SNR.
 - Merger: Magnetic reconnection between the two merging magnetospheres.
 - Magnetar: flares in the magnetosphere of a magnetar (associated to SGR).
- Neutrino production mechanism?

A particular event: ANT150901

Alert VHE (Sept. 1, 2015)

E ~ 50-100 TeV RA=246.306°; dec=-27.468° Uncertainty: ~18 arcmin (radius, 50%)

Sent after 10 s to MASTER, Swift-XRT Follow-up with **Swift-XRT after 9h** Follow-up with **MASTER after 10h**

Multifrequency observations: 16 ATEL + 6 GCN

Neutrinos

IceCube: ATel 8097

Optical

- Pan-STARRS: ATel 7992, 8027
- SALT: ATel 7993
- NOT: ATel 7994 GCN18236
- WiFeS: ATel 7996
- CAHA: ATel 7998, GCN18241
- MASTER: ATel 8000 GCN18240
- LSGT: ATel 8002
- * NIC: ATel 8006
- ANU: GCN18242
- GCM: GCN18239
- VLT/X-shooter

- > X-rays
 - Integral: ATel 7995
 - MAXI: ATel 8003
 - Swift: ATel 8124, GCN18231
- Radio
 - Jansky VLA: ATel 7999, 8034
- Gamma-rays
 - MAGIC: ATel 8203
 - Fermi-GBM: GCN18352
 - HAWC
 - . HESS

GCN CIRCULAR NUMBER: 18236

(Optical + NIR spectroscopy from NOT)

..All this points to USNO-B1.0 0626-0501169 being a young accreting G-K star, undergoing a flaring episode that produced the X-ray emission. We also note that this object is close to the nearby Rho Ophiuchi star forming region, being probably associated with it.

Binary NS Mergers and HEN?

- Prompt neutrino production on-axis
- Off-axis scenario, neutrino-production related to the extended γ -ray emission (Kimura et al. 2017).
- (Later) Extended emission from a relativistic wind with its rotational energy, (Fang&Metzger. ApJ 2017).

GW170817

v?

ApJL 850:L35 (2017) (multimessenger): ApJL 848 L12 (2017)

