Phenomenology of light sterile neutrinos

Yu-Feng Li

liyufeng@ihep.ac.cn

Institute of High Energy Physics, Beijing

XVIII International Workshop on Neutrino Telescopes
18-22 March 2019, Venice, Italy

Three Neutrino Paradigm

Standard Parameterization of Mixing Matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$

$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$

$$c_{ab} \equiv \cos \vartheta_{ab}$$
 $s_{ab} \equiv \sin \vartheta_{ab}$ $0 \le \vartheta_{ab} \le \frac{\pi}{2}$ $0 \le \delta_{13}, \lambda_{21}, \lambda_{31} < 2\pi$

- 3 Mixing Angles: ϑ_{12} , ϑ_{23} , ϑ_{13}
- 1 CPV Dirac Phase: δ_{13}
- 2 independent $\Delta m_{kj}^2 \equiv m_k^2 m_j^2$: Δm_{21}^2 , Δm_{31}^2
- Absolute Neutrino Masses
- > Two CPV Majorana Phases

Beyond 3-v oscillations: sterile neutrinos

Explanation of short baseline oscillations:

eV-scale sterile neutrinos (which have mixing with active mass eigenstates)

Status of short baseline oscillations in nue(bar) disappearance channels

Gallium anomaly

SAGE, PRC (2006); PRC (2009); Laveder et al. (2007), etc.

Gallium Radioactive Source Experiments: GALLEX and SAGE

Test of Solar Neutrino Detection

Detection Process:
$$\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$$

$$\nu_e$$
 Sources: $e^- + {}^{51}\mathrm{Cr} \rightarrow {}^{51}\mathrm{V} + \nu_e$ $e^- + {}^{37}\mathrm{Ar} \rightarrow {}^{37}\mathrm{Cl} + \nu_e$

~2.9σ deficit

Neutrino energies: ~0.8 MeV

$$\Delta m_{\mathsf{SBL}}^2 \gtrsim 1\,\mathrm{eV}^2 \gg \Delta m_{\mathsf{ATM}}^2 \gg \Delta m_{\mathsf{SOL}}^2$$

Anomaly supported by the new cross section measurement

$$^{3}\text{He} + ^{71}\text{Ga} \rightarrow ^{71}\text{Ge} + ^{3}\text{H}$$

Frekers et al., PLB 706 (2011) 134

Contributions from excited states verified Giunti et. al. 1210.5715

Reactor Antineutrino Anomaly

[Mention et al, PRD 83 (2011) 073006]

New reactor $\bar{\nu}_e$ fluxes

[Mueller et al, PRC 83 (2011) 054615; Huber, PRC 84 (2011) 024617]

- Discrepancy between theory and measurements
- $\sim 2.8 \sigma$ deficit (depending on the theoretical flux uncertainty)
- Nominal theoretical uncertainty from the Mueller+Huber model ~ 2.5%

A closer look at reactor rates data

a	Experiment	f_{235}^a	f_{238}^a	f_{239}^a	f_{241}^a	$R_a^{\rm exp}$	$\sigma_a^{\rm exp}$ [%]	σ_a^{cor} [%]	σ_a^{the} [%]	L_a [m]
1	Bugey-4	0.538	0.078	0.328	0.056	0.932	1.4	}1.4	2.5	15
2	Rovno91	0.606	0.074	0.277	0.043	0.930	2.8	}1.4	2.4	18
3	Rovno88-1I	0.607	0.074	0.277	0.042	0.907	6.4	3.1)	2.4	18
4	Rovno88-2I	0.603	0.076	0.276	0.045	0.938	6.4	53.1	2.4	18
5	Rovno88-1S	0.606	0.074	0.277	0.043	0.962	7.3	2.2	2.4	18
6	Rovno88-2S	0.557	0.076	0.313	0.054	0.949	7.3	3.1	2.5	25
7	Rovno88-2S	0.606	0.074	0.274	0.046	0.928	6.8))	2.4	18
8	Bugey-3-15	0.538	0.078	0.328	0.056	0.936	4.2)	2.5	15
9	Bugey-3-40	0.538	0.078	0.328	0.056	0.942	4.3	4.0	2.5	40
10	Bugey-3-95	0.538	0.078	0.328	0.056	0.867	15.2	J	2.5	95
11	Gosgen-38	0.619	0.067	0.272	0.042	0.955	5.4))	2.4	37.9
12	Gosgen-46	0.584	0.068	0.298	0.050	0.981	5.4	2.0	2.4	45.9
13	Gosgen-65	0.543	0.070	0.329	0.058	0.915	6.7) }	2.4	64.7
14	ILL	1	0	0	0	0.792	9.1		2.4	8.76
15	Krasnoyarsk87-33	1	0	0	0	0.925	5.0	}4.1	2.4	32.8
16	Krasnoyarsk87-92	1	0	0	0	0.942	20.4	J*.1	2.4	92.3
17	Krasnoyarsk94-57	1	0	0	0	0.936	4.2	0	2.4	57
18	Krasnoyarsk99-34	1	0	0	0	0.946	3.0	0	2.4	34
19	SRP-18	1	0	0	0	0.941	2.8	0	2.4	18.2
20	SRP-24	1	0	0	0	1.006	2.9	0	2.4	23.8
21	Nucifer	0.926	0.061	0.008	0.005	1.014	10.7	0	2.3	7.2
22	Chooz	0.496	0.087	0.351	0.066	0.996	3.2	0	2.5	≈ 1000
23	Palo Verde	0.600	0.070	0.270	0.060	0.997	5.4	0	2.4	≈ 800
24	Daya Bay	0.561	0.076	0.307	0.056	0.946	2.0	0	2.5	≈ 550
25	RENO	0.569	0.073	0.301	0.056	0.944	2.2	0	2.4	≈ 411
26	Double Chooz	0.511	0.087	0.340	0.062	0.935	1.4	0	2.5	≈ 415

All Reactors	²³⁵ U	OSC
$\chi^2_{\rm min}$	25.3	23.0
NDF	32	31
GoF	79%	85%

MC: 235 U disfavored at 1.7σ

RAA: oscillation-based explanation

SBL oscillations are averaged at the Daya Bay, RENO, and Double Chooz near detectors —> no spectral distortion

Burn-up Feature @ Reactors

- Produced by the β decays of the fission products of 235 U 238 U 239 Pu 241 Pu
- Effective fission fractions:

$$F_{235}$$
 F_{238} F_{239} F_{241}

Cross section per fission:

$$\sigma_f = \sum_{k=235,238,239,241} F_k \, \sigma_{f,k}$$

Both experiments disfavor the equal suppression at around 3-sigma!

A Global Analysis of Reactor Flux Data

	235	239	235+239	235+238+239	235=239=241+238	OSC	235+OSC	239+OSC
$\chi^2_{\rm min}$	34.6	41.6	34.1	29.9	38.6	33.1	29.5	26.9
NDF	39	39	38	37	38	38	37	37
GoF	67%	36%	65%	79%	44%	69%	80%	89%
r_5	0.933 ± 0.010	(0.941)	0.932 ± 0.009	0.952 ± 0.014	0.941 ± 0.013	(1.014)	0.984 ± 0.025	(1.014)
r_8	(0.890)	(0.868)	(0.914)	0.672 ± 0.135	0.926 ± 0.096	(1.021)	(0.969)	(0.956)
r_9	(0.987)	0.997 ± 0.029	0.969 ± 0.030	1.042 ± 0.046	0.944 ± 0.015	(1.019)	(1.026)	1.099 ± 0.040
r_1	(0.989)	(0.938)	(1.003)	(1.001)	0.942 ± 0.013	(1.015)	(1.024)	(1.015)
Δm_{41}^2						$0.49^{+0.02}_{-0.03}$	$0.48^{+0.05}_{-0.03}$	0.49 ± 0.02
$\sin^2 2\vartheta_{ee}$						0.15 ± 0.04	$0.48^{+0.05}_{-0.03}$ $0.10^{+0.05}_{-0.04}$	0.16 ± 0.04

DYB+RENO joint data:

2.9σ preference of U235 over oscillation-only

Global Flux Data (evolution+rates):

- a) A common inaccuracy of all beta conversion predictions: disfavored at 2.9σ
- b) Oscillation-including hypothesis is favored over the oscillation-including one: at 1-2σ

New Spectral Feature @ Reactors

- (1) The "5 MeV bump" cannot be explained by neutrino oscillations (averaged in RENO, Double CHOOZ and Daya Bay)
- (2) Theoretical miscalculation of both the rate and spectrum?
- (3) Detector energy nonlinearity? [Mention et al, PLB 773 (2017) 307] (DYB/DC achieved better than 1% precision → see the talk by Jiajie Ling)
- (4) One may need to increase the uncertainty: e.g. about 4%-5%. [Hayes and Vogel, 2016]

Spectral ratio result@NEOS

NEOS

[PRL 118 (2017) 121802 (arXiv:1610.05134)]

- Hanbit Nuclear Power Complex in Yeong-gwang, Korea.
- Thermal power of 2.8 GW.
- Detector: a ton of Gd-loaded liquid scintillator in a gallery approximately 24 m from the reactor core.
- ► The measured antineutrino event rate is 1976 per day with a signal to background ratio of about 22.

Spectral ratio result@DANSS

DANSS

[Solvay Workshop, 1 December 2017; La Thuile 2018, 3 March 2018; Neutrino 2018, 8 June 2018]

Detector of reactor Anti Neutrino based on Solid Scintillator

- Installed on a movable platform under a 3 GW reactor.
- Large neutrino flux.
- Reactor shielding of cosmic rays.
- Variable source-detector distance with the same detector!

 $Down = 12.7 \,\mathrm{m}$ $Up = 10.7 \,\mathrm{m}$

Model independent SBL oscillations

Gariazzo et. al., PLB 782 (2018) 13

$$\sim 3.7\sigma$$

$$\Delta m_{41}^2 = 1.29 \pm 0.03$$

$$|U_{e4}|^2 = 0.012 \pm 0.003$$

$$|U_{e3}|^2 = 0.022 \pm 0.001$$

[See also Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz, arXiv:1803.10661]

Implications for Reactor and Gallium anomalies

- $ightharpoonup 3\sigma$ agreement.
- \triangleright 2 σ tension.
- Small overestimate of the reactor fluxes.
- Small overestimate of the GALLEX and SAGE efficiencies.

Implications for Reactor and Gallium anomalies

- ▶ Indication of $r_{235} < 1$.
- Likely small overestimate of the GALLEX and SAGE efficiencies.

Model independent fit and the future tests

- NEOS and DANSS.
- Reactor rates with free 235 U and 239 Pu fluxes: r_{235} and r_{239} .
- ► Gallium data with free GALLEX and SAGE efficiencies: η_G and η_S .
- New reactor experiments: STEREO, Neutrino-4, SoLiD, PROSPECT
- Kinematic ν₄ mass measurement: KATRIN

[See also Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz, arXiv:1803.10661]

Latest results from spectral ratios

Status of short baseline oscillations in nu-mu(bar)→nu-e(bar) and nu-mu(bar) disappearance channels

[PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007]

Muon decay-at-rest beam:

$$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$$

 $L \simeq 30 \,\mathrm{m}$

 $20 \,\mathrm{MeV} \leq E \leq 200 \,\mathrm{MeV}$

 3.8σ excess

$$\Delta m^2 \gtrsim 0.2 \, \mathrm{eV}^2$$

$$\Delta m^2 \gtrsim 0.2 \,\mathrm{eV}^2 \quad (\gg \Delta m_\mathrm{A}^2 \gg \Delta m_\mathrm{S}^2)$$

MiniBooNE

Purpose: check LSND signal with different L&E, but the same L/E (>475 MeV)

~4.5 σ (2.8 σ) excess: unidentified backgrounds in low energy ranges? \rightarrow MicroBooNE.

A pragmatic approach: (E>475 MeV) [arXiv: 1308.5288]

MiniBooNE low energy bins

Fit of MB Low-Energy Excess requires small mass splitting and large mixing angle, which are in contradiction with ICARUS/OPERA and the disappearance data.

Appearance data

MINOS+

All the results in (anti)v_µ disappearance

Global fit of nu-e(bar) disappearance, nu-mu(bar)→nu-e(bar) and nu-mu(bar) disappearance data

Based on the latest update of Gariazzo, Giunti, Laveder, YFL, arXiv:1703.00860

SBL oscillations in the 3+1 scheme

In SBL experiments $\Delta_{21} \ll \Delta_{31} \ll 1$.

$$P_{\substack{(-) \ \nu_{\alpha} \to \nu_{\beta}}}^{\mathrm{SBL}} \simeq \sin^2 2 \vartheta_{\alpha\beta} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E} \right)$$

 $\sin^2 2\vartheta_{\alpha\beta} = 4|U_{\alpha4}|^2|U_{\beta4}|^2$

$$P_{\substack{(-) \ \nu_{\alpha} \to \nu_{\alpha}}}^{\mathrm{SBL}} \simeq 1 - \sin^2 2\vartheta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

 $\sin^2 2\vartheta_{\alpha\alpha} = 4|U_{\alpha4}|^2 \left(1 - |U_{\alpha4}|^2\right)$

▶ Amplitude of $\nu_{\mu} \rightarrow \nu_{e}$ transitions:

$$\sin^2 2\vartheta_{e\mu} = 4|U_{e4}|^2|U_{\mu 4}|^2 \simeq \frac{1}{4}\sin^2 2\vartheta_{ee}\sin^2 2\vartheta_{\mu\mu}$$

- ▶ Upper bounds on ν_e and ν_μ disappearance \Rightarrow strong limit on $\nu_\mu \rightarrow \nu_e$ [Okada, Yasuda, IJMPA 12 (1997) 3669; Bilenky, Giunti, Grimus, EPJC 1 (1998) 247]
- Similar constraint in 3+2, 3+3, ..., $3+N_s!$ [Giunti, Zavanin, MPLA 31 (2015) 1650003]

Appearance-Disappearance Tension

Without (left) and with (right) MINOS+ data (both without the MB low energy bins)

$$\chi^2_{PG}/NDF_{PG} = 7.8/2 \Rightarrow GoF_{PG} = 2\%$$

$$\chi^2_{PG}/NDF_{PG} = 18.3/2 \Rightarrow GoF_{PG} = 0.01\%$$

Appearance-Disappearance Tension

> Without (left) and with (right) MINOS+ data (both without the MB low energy bins)

$$\chi^2_{PG}/NDF_{PG} = 7.8/2 \Rightarrow GoF_{PG} = 2\%$$
 $\chi^2_{PG}/NDF_{PG} = 18.3/2 \Rightarrow GoF_{PG} = 0.01\%$

$$\chi^2_{PG}/\mathsf{NDF}_{PG} = 18.3/2 \Rightarrow \mathsf{GoF}_{PG} = 0.01\%$$

From Mild to Strong tension → New physics beyond 3+1 (3+N) vacuum mixing??

Future test of the appearance channel

SBN PROGRAM @ FERMILAB

Definitive program to address LSND/MiniBoone anomalies in next ~5 years.

JSNS2 @ J-PARK

Sensitivity of the JSNS2 experiment with the latest configuration (1 MW × 3 years × 1 detector).

Conclusion

- a) Interesting model-independent indications of short baseline oscillations from reactors (DANSS & NEOS)
- b) Reactor and Gallium Anomalies → Need revision of the U235 calculation and small decrease of the GALLEX and SAGE efficiencies. → consistent with the fuel evolution data
- c) Many on-going experiments will check the indication in the next several years:
- DANSS, NEOS, STEREO, Neutrino-4, PROSPECT, SoLid, CHANDLER, ...
- d) The MINOS+ result disfavors the LSND signal in the 3+1 (3+N) vacuum mixing scheme
- → future direct test at SBN@Fermi Lab and JSNS2@J-PARC

Thanks!

Backup

The 3+2 scheme and more

 $\sin^2 2\vartheta_{\alpha\beta}^{(k)} \simeq \frac{1}{4} \sin^2 2\vartheta_{\alpha\alpha}^{(k)} \sin^2 2\vartheta_{\beta\beta}^{(k)},$

arXiv:1508.03172

Light Sterile Neutrinos@0νββ

$$m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3 + |U_{e4}|^2 e^{i\alpha_{41}} m_4$$

$$m_{\beta\beta}^{(k)} = |U_{ek}|^2 m_k$$

$$m_1 \ll m_4$$
 $\downarrow \downarrow$
 $m_{\beta\beta}^{(4)} \simeq |U_{e4}|^2 \sqrt{\Delta m_{41}^2}$

warning:

possible cancellation with $m_{etaeta}^{(3
u)}$

[Barry, Rodejohann, Zhang, JHEP 07 (2011) 091]
 [Li, Liu, PLB 706 (2012) 406]
 [Rodejohann, JPG 39 (2012) 124008]
 [Girardi, Meroni, Petcov, JHEP 1311 (2013) 146]
 [CG, Zavanin, JHEP 07 (2015) 171]

Examples of New Physics for the MB Excess

See also other models and constraints: 1810.07185; 1810.01000; 1808.07460