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PROBLEM STATEMENT

G=(V,E) graph
A adjacency

X € RV features
v; —»z €RY  latent rep. 1)
where

veV, d<|V|
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SOLUTION
Encoder - Decoder Model
ENC:V — R?
d d d @)
DEC:R?* xR - RTor R? 5 RT
Pairwise similarity function
sc:VxV—=RT 3)

Reconstruction Objective
DEC(ENC(v;), ENC(vj)) = DEC(z;, zj) = sg(vi, v)) 4)
Loss

L= Z E(DEC(ZZ',Z]'), SG(UZ', U])) (5)

v;,0,€V
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MAPPING

Optimize encoder by minimizing loss

[ ]
[ ]
v. ®
® ® o
. pa )
e o |
® y ® e

) s
Py ° °e
LI
e L4 om
@ » . ° °
® °
0. ™
o
o
-1.0 -05 0.0 0.5 1.0 15 2.0 25




General Embedding Nodes Embedding Subgraphs

0000 @00 [©]
:

SHALLOW EMBEDDING

= Embedding lookup
ENC(Z)I‘) = ZZ),‘
6
zZ embedding vectors (©)
v; one-hot indicator
» Factorization Based
DEC(z;,z)) = |lzi—zl}} or z[z 7)

» Random Walk

DEC(z;,zj) = pr(vilv;) where T..length of walk  (8)

Problem: No parameters shared, no node attributes, no
representation for new nodes
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NEIGHBORHOOD AUTOENCODER

— v;’s neighborhood relation with entire graph
— using Autoencoders
— unary decoder

si € RVl v v; neighborhood vector

Objective
DEC(ENC(s;)) = DEC(z;) ~ s;

Loss
L= |IDEC(z) - sill3

©)

(10)

(11)
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NEIGHBORHOOD AGGREGATION AND

CONVOLUTIONAL ENCODERS
— ©v;’s local neighborhood
— aggregation of node attributes
— iterative / recursive algorithm + dense NN layer

Algorithm 1: Neighborhood-aggregation encoder algorithm. Adapted from [29].

Input : Graph G(V,€); input features {x,, Vv € V}; depth K; weight matrices {W*, vk € [1, K]};
non-linearity o; differentiable aggregator functions { AGGREGATE, Vk € [1, K]};
neighborhood function A : v — 2V

Output: Vector representations z, for allv € V

1 hd « x,,YveV;
2 fork =1..K do
3 forv € Vdo

4 h}/(,)  AGGREGATE,({h}™",Yu € N(v)});
5 ht o (W" - COMBINE(h%—1, h}w.)))

6 end

7 | h*« NorMALIZE(hE), Vv € V

s end

9z, — hX YoeV

Adavantages: Shared Parameters, structure, attributes, new
nodes
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GRAPH NEURAL NETWORKS

— Learn representation of subgraphs
— Mostly supervised
— Idea: Message passing between nodes

Aggregation
Z h(hj, x;, x;)
v,€N(v;)
(12)
k iterations

h  arbitrary function € C' that is a contraction map
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Figure 7: Overview of encoding in the neighborhood aggregation methods. To generate an embedding for node A, the
model aggregates messages from A’s local graph neighbors (i.e., B, C, and D), and in turn, the messages coming from these
neighbors are based on information aggregated from their respective neighborhoods, and so on. A “depth-2” version of this
idea is shown (i.e., information is aggregated from a two-hop neighborhood around node 2), but in principle these methods
can be of an arbitrary depth. At the final “depth” or “layer” the initial messages are based on the input node attributes.
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