Crystal collimation tests with heavy ion beams

D. Mirarchi, R. Bruce, M. D’Andrea, S. Redaelli

On behalf of the LHC Collimation team
• **Crystal collimation tests** carried out in **2015 and 2016 with Pb beam**, in **2017 with Xe beams**

• **Puzzling results obtained with Pb beams**

• After detailed analysis and exporting knowledge acquired also in the SPS, **improved collimator settings tested with Xe beams**

 Excellent results achieved and significant cleaning improvement demonstrated!

Absorption of debris from TCSGs using TCLAs

Cleaning efficiency as a function of TCSG-TCLA

Improved cleaning performance in the range of 3-60 achieved with crystals!
Proposed tests

- Fundamental requirement for all the discussion on possible operational use of crystals with Pb:
 - Reproduce good cleaning results obtained with Xe beam
 - Dedicated MD with low intensity needed

- If good results are achieved:
 - Possibility of End of Fill tests with high intensity
 - Possibility of operational tests along the entire cycle

- Possible collimation scheme for operational tests:
 - Adiabatic insertion of crystals in the collimation hierarchy

Operational system in place at nominal settings and crystals set as primary stage with 0.2-0.5σ tighter settings than TCPs

Cleaning performance of the system defined by the crystals while machine protection aspects fulfilled by presence of standard system at nominal settings
Configurations and validation required

- **When do we insert the crystals if operational tests allowed:**
 - Analysis of *loss spikes and lifetime* drops show *ramp* and *squeeze* as most critical points
 - Crystal insertion from injection preferred
 - Insertion at top energy would require a careful scraping/insertion with 5μm steps

- **Validation steps required** to allow End of Fill test and/or operational tests:
 - Test with *intermediate intensity* during the *intensity ramp up*
 - System performance *validation through standard loss maps procedure*

- **Number of fills required for validation dictated by ASD requirements:**
 - If only End of Fill tests allowed, 1 ASD with colliding beams would be sufficient
 - If tests during entire cycle foreseen, 3 ASD (flat top, end of squeeze, colliding)

- **Possible strategy for *timing/fill optimization***:
 1. Dedicated *MD with low intensity* early in the run, *early commissioning*?
 2. 1-2 days needed for detailed *off-line analysis*
 3. **Results will define the validation LM needed** and possible further tests (EoF or operational)
OP and MP aspects

• What will be needed from **OP side** in case of operational tests?
 ✓ Additional fields in LSA to load crystal position and angle functions
 ✓ Operational sequence
 ✓ Something else? (Belen’s talk)

• What will be needed from **MP side**?
 ✓ Present interlock strategy: beam permit is false if replacement beam pipe is out (maskable in SIS) or position limits are hit
 ➢ Present interlocks should be sufficient if only tests in static conditions are allowed
 ➢ Modifications needed if operational tests performed
 ✓ Present position limits stored in NON_MULTIPLEXED BP: discrete limit
 ➢ Impossible to implement function limits now
 ➢ Possible solution: two BP with discrete limits for injection and top energy
 • Limits changed loading BP through sequencer
 • Still possible drawback: crystals can still get to the flat top limits during the ramp
 ✓ Something else? (Daniel’s talk)
Gonio and Crystal aspects

• **Main requirement for the goniometers:**

 ✓ **Closed loop!**
 - 100% availability during high beta physics run
 - However, heavy ions run of about 1 month while high beta only 3 days...
 - More on goniometers performance in Mark’s talk

 ✓ **What if the closed loop is lost?**
 - If lost in static condition: slow drift of the crystal angle
 ✓ Channeling condition slowly lost
 - If lost in dynamic condition: fast drift of the crystal angle
 ✓ Channeling condition immediately lost

 ✓ **Any possibility to interlock on loop status?**
 - If not, lost of channeling condition immediately seen on the loss pattern.
 BLM based interlock?

• **Crystal robustness:**

 ✓ Do crystals get damaged if impacted during ASD?
 - HiRadMat tests and simulations performed (Marco’s talk)
BACKUP
Collimator settings

• From N. Fuster at HI2018 preparation meeting 5

<table>
<thead>
<tr>
<th>Coll.</th>
<th>Injection [σ, ε=3.5E-6]</th>
<th>Top energy [σ, ε=3.5E-6]</th>
<th>Physics [σ, ε=3.5E-6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/TCSG/TCLA IR7</td>
<td>5.7/6.7/10</td>
<td>5/6.5/10</td>
<td>5/6.5/10</td>
</tr>
<tr>
<td>TCP/TCSG/TCLA IR3</td>
<td>8/9.3/10</td>
<td>15/18/20</td>
<td>15/18/20</td>
</tr>
<tr>
<td>TCTs IR1/5</td>
<td>13</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>TCT IR2</td>
<td>13</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>TCT IR8</td>
<td>13</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>TCDQ/TCSP.6</td>
<td>8/7</td>
<td>7.4/7.4</td>
<td>7.4/7.4</td>
</tr>
<tr>
<td>TCL4/5/6 IR1/5</td>
<td>Open</td>
<td>Open</td>
<td>15/15/out</td>
</tr>
</tbody>
</table>

• Settings during crystal collimation tests:
 ✓ IR7 collimator upstream crystals opened
 ✓ IR7-TCSGs and TCLAs downstream crystals at settings in slide 2
 ✓ Rest of the system at nominal settings

• Settings during operational tests:
 ✓ All the system at nominal settings with crystals 0.2-0.5σ tighter than IR7-TCPs