

SDG Volunteer Computing

("LHC@home enhancement")

openlab summer project 2018

Laurence Field & Ben Segal CERN

Volunteer Computing

- A type of distributed computing using public volunteers
- SETI@home (1999), Folding@home (2000)
 - LHC@home launched in 2004
- Computer owners donate computing capacity
 - To a cause or project
- Not necessarily only spare cycles on Desktop PC's
 - Idle machines in data centers
 - Home clusters
 - Tablets or phones

LHC@home (2004) Accelerator design by beam simulation

Africa@home (2006)

Modelling the epidemiology of malaria in Africa with Swiss Tropical Institute

CAS@home (2009) Simulation of nanotech water filters

Project with Tsinghua Univ, IBM World Community Grid

- 1) Simulating enhanced water flow through nanotubes
- 2) Accuracy at low v needs large samples (~10⁵ CPU-years)
- 3) IBM WCG projects preloaded on Sony Vaios in USA

Asia@home (2010) volunteer seismic detection and science

Citizen Cyberlab

Learning and creativity in citizen cyberscience (EU FP7)

BOINC

- Berkeley Open Infrastructure for Network Computing
 - Started in 2002 by SETI@home team
 - Funded by the National Science Foundation (NSF)
 - Developed by a team based at the Space Sciences Laboratory
 - University of California, Berkeley
 - Led by David Anderson
- Provides open middleware for volunteer computing
 - Client (Mac, Windows, Linux, Android) with CLI
 - GUI
 - Application runtime system
 - Server software
 - Project Web site

Volunteer Perspective

- Download and run the BOINC client
- Choose a project
- Enter an email address and password
 - Or silent connection with a key
- Run the application and earn credit

Why do volunteers participate?

LHC@home Motivation for a BOINC project

- Free* resources
 - 100K hosts achievable for large projects
 - Actual job slot count (number of cores) maybe even higher
- Community engagement
 - Outreach channel
 - Explaining the purpose and value of the science
 - Participation
 - Offering people a chance to contribute
 - Engagement forms a strong bond
 - Community support
- (But there are some costs required to use them!)

Challenges to solve

- The cost of using the "free" resources
 - Initial software integration requires investment
- Operations and Maintenance
 - Public facing support on all levels (but lowered by support from the community itself!)
- Attracting and retaining volunteers
 - Advertisement and engagement
 - Communications cost for capacity building
- Low Level of Assurance
 - Anyone can register as a volunteer (not the same level of trust as with the Grid)
- Running HEP software on Windows
 - Windows systems are till 85% of the resources!!
 - CERN solved this problem by using VIRTUALISATION

BOINC with Virtualization

Our Usage of BOINC at CERN

- A single project "LHC@home" with multiple applications
 - Reduced operational costs
 - Single forum
 - One service
 - Simplified for the volunteers
 - One project to attach to instead of several
 - Single user name and password
- Both classic and virtualised applications run together
 - Sixtrack ("classic")
 - Test4theory, ATLAS, CMS, LHCb and ALICE
 - ("virtualised") because HEP software only runs on Linux

http://cern.ch/lhcathome

LHC@home 2018 Summer Student project

The summer student project:

→ Create new applications for SDG researchers:

- Working with University of Geneva teams
- Demonstrate R language and Machine Learning capabilities
- Prototype the applications first in a private cloud cluster
- Port prototypes to BOINC / LHC@home for Volunteer Computing

LHC@home 2018 Summer Student project

- The summer student project:
 - First time Google's system "Tensor Flow" used in BOINC
 - Build, train and exploit Neural Networks for SDG applications
 - Allows the volunteers' GPU's to be used as well as CPU's

Summary

- Volunteer Computing can and is providing:
 - Significant additional computing resources
 - Potentially O(100K) machines
- Virtualisation enables HEP applications
 - To run on multiple platforms: Windows, Mac and Linux
 - Can therefore reach more volunteers
- LHC@home is a common platform
 - Supporting multiple applications, now including SDG applications
- Come and join the fun!
 - http://lhcathome.web.cern.ch/join-us