

$H \rightarrow bb$ and beyond

Patricia Conde Muíño (IST & LIP)

Higgs couplings to quarks

 > Higgs boson observed & measured mainly in bosonic channels (gg, WW, ZZ) Compatible with SM
 > H→bb: largest BR in the SM (~58%) Constrain total width and measure absolute coupling Probe the Higgs couplings to quarks
 > Evidence of fermionic decays in Run 1: H→: 5.5σ (expected 5σ) H→bb: 2.6σ (expected 3.7σ)
 > Run 1 signal strength for H→bb:

$$\mu_{bb}^{CMS+ATLAS} = 0.70^{+0.29}_{-0.27}$$

ATLAS+CMS Run 1 Coupling combination

How?

- Huge background from SM b-quark pair production
 - Need clear signatures
- Explore non-dominant production modes
 - > Associated production with W or Z (VH search)

VH searches: 3 channels

Two jets \succ 0-lepton: proton anti-kT with R=0.4 E_{τ}^{miss} > 150 GeV P_j1>45 GeV proto p₇^{j2}>20 GeV 1-lepton: B-tagging e/μ, p_T>25 GeV proton Eff: 70%, light jet mistag **Tight isolation** rate: 0.3%, charm mistag rate: 8% Missing E_{τ} >30 GeV (e chn) Analysis categories: protor p_⊤^V > 150 GeV 2/3 jets (0/1lepton) 2-leptons: 2/≥3jets (2lept.) Isolated ee, µµ p_T^V bins p₁¹>25 GeV, p₁²>7 GeV 75-150, > 150 GeV (2lepton) p_T^V > 75 GeV protor >150 GeV (0/1lepton) m_{μ} compatible with m_{τ}

P. Conde Muíño

Main backgrounds

Z+bjets dominates in 0, 2 lepton channels Top quark and W+jets in 1 lepton channel Multi-jet important in 1 lepton channel

0 lepton

1 lepton

Multi-variate analysis

Boosted decision tree (BDT)	Variable	0-lepton	1-lepton	2-lepton
Combine many different variables	p^V_{T}	$\equiv E_{\rm T}^{\rm miss}$	×	×
,	$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	
Trained in 8 categories: 3 lepton, 2/3 jets,	$p_{\mathrm{T}}^{b_1}$	×	×	×
low/high n ^v bin (2 lepton channel)	$p_{\mathrm{T}}^{b_2}$	×	×	×
iow, high p _T bin (2 repron channel)	m_{bb} \rightarrow \rightarrow	×	×	×
Mast discrimination from m and AD(h h)	$\Delta R(b_1, b_2)$	×	×	×
\gg Most discrimination from m_{bb} and $\Delta R(D_1, D_2)$	$ \Delta\eta(\vec{b_1},\vec{b_2}) $	×		
	$\Delta \phi (ec V, b ec b)$	×	×	×
$\overset{\bullet}{\underbrace{\Theta}}_{450}$ $\overset{\bullet}{}_{450}$ $\overset{\bullet}{}_{450}$ $\overset{\bullet}{}_{450}$ $\overset{\bullet}{}_{450}$ $\overset{\bullet}{}_{450}$ $\overset{\bullet}{}_{450}$	$ \Delta\eta(ec V, bec b) $			×
= 400	$m_{ m eff}$	×		
350 2 tags, 2 jets, $p_{\rm V}^{\rm V}$ > 120:GeV	$\min[\Delta \phi(ec{\ell},ec{b})]$		×	
300 - 40	$m^W_{ m T}$		×	
250	$m_{\ell\ell}$			×
200	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			×
150	$m_{\rm top}$		×	
100 Data 2012	$ \Delta Y(ec V, b ec b) $		×	
		Only	v in 3-jet ev	vents
$0 \begin{bmatrix} 1 & 1 & 2 & 3 & 4 & 5 \end{bmatrix} = 0$	$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×
$\Delta R(b_1, b_2)$	m_{bbj}	×	×	×

> New in run 2: $m_{Top'}$ | $\Delta Y(V,H)$ | \rightarrow +7% in sensitivity

Combined fit

P. Conde Muíño

Post-fit distributions

ATLAS-CONF-2016-091

- > 79 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV
 - > 4.9 σ evidence observed (4.3 σ expected)
 - systematic uncertainties start to dominate!!

$$\mu_{VH}^{bb} = 1.16^{+0.27}_{-0.25} = 1.16 \pm 0.16(\text{stat.})^{+0.21}_{-0.19}(\text{syst.})$$

Dominant systematics from b-tagging, background normalization & modelling (W+jets, Z+jets, top)

★ Includes ttH and vector boson fusion (with H->bb) channels
★ 5.40 observation!! (5.50 expected)

- * Combination with two more channels
 - ➡ Four leptons (ZZ)
 - ⇒ yy

 \star

 Direct observation of the Higgs н produced in association with vector bosons!

Channel	Significance			
Chamber	Exp.	Obs.		
$H \to ZZ^* \to 4\ell$	1.1	1.1		
$H \rightarrow \gamma \gamma$	1.9	1.9		
$H \rightarrow b\bar{b}$	4.3	4.9		
VH combined	4.8	5.3		

And what now?

- *Questions
 - ➡ Is it really as the SM predicts?
 - What is the sign of the coupling?
 - Are there anomalous components?
- *Probing the sign of the Hbb coupling:
 - → Decay $H \rightarrow \Upsilon \gamma$

Interference between two difference diagrams results in very low BR Can be enhanced if the sign of the coupling is the opposite! Very difficult channel —> will need HL-LHC

Phys.Rev. D94 (2016) no.7, 075017

Theory meets Experiment (14 Dec 18)

Can we probe anomalous couplings in H→bb?

- \star Look at the hbby effective vertex
 - $L_{hb\bar{b}\gamma} = rac{1}{\Lambda^2} F^{\mu
 u} ar{b}\sigma_{\mu
 u} (d_1 + id_2\gamma_5) bh$ Can we measure this decay at ATLAS?
- *Previous studies
 - ZH production
 - Basic selection

Foton pT, missing ET, $m_{\ell\ell}$, $\Delta \phi_{\gamma \ell \ell}$, ...

Process	$\sqrt{s} = 14 { m TeV}$					
	σ (pb) NEV ($\mathcal{L} = 1000 \text{ fb}^-$			-1)		
		C 0	C 1	C2	C3	C4
$pp ightarrow Zh, h ightarrow bar{b}\gamma$	$3.332 imes 10^{-4}$	83	70	41	39	29
$pp ightarrow Zh\gamma$	4.765×10^{-5}	17	13	1	1	-
$pp ightarrow t ar{t} \gamma$	0.03144	5214	586	31	5	4
$pp \to \ell^+ \ell^- b \bar b \gamma$	0.01373	3149	2507	345	98	54
$pp \to \ell^+ \ell^- j j \gamma$	3.589	5355	4523	427	213	107

* hbby coupling can be probed at the LHC at 14 TeV at the 3σ level with an integrated luminosity of ~ 2000 fb⁻¹

P. Conue mumo

Dwivedi et al, PhysRevD.96.015035

THEOLY HEELS EXPERIMENT (14 Dec 18)

Can we probe anomalous couplings in H→bb?

A. Kelly's master thesis

*Can we use the photon to trigger and exploit higher cross section in the gluon-gluon fusion mechanism?

- *****Back of the envelope calculation
 - Using mad graph to generate the signals
 - Basic cuts in ZH production would lead to S/sqrt(B) ~3

	$\sqrt{s} = 14 { m TeV}$				
Process	$\sigma(\mathbf{n}\mathbf{b})$	Number of Events (L $= 1000 \text{fb}^{-1}$)			
	0(00)	generator		$P_{T\gamma} \geq 60 \text{GeV}$	
		generator $P_{T\gamma} \ge 20 \text{GeV}$		$P_{Tj1} \ge 40 \text{ GeV}$	
		cuts		$P_{Tj2} \ge 20 \text{ GeV}$	
BSM $pp \rightarrow h \rightarrow b \overline{b} \gamma$	1.8	$1.8 imes10^{6}$	$1.6 imes10^{6}$	$2.6 imes 10^5$	
$pp ightarrow b ar{b} \gamma$	$1.9 imes 10^{4}$	$1.9 imes10^{10}$	$1.3 imes10^{8}$	$1.7 imes10^{6}$	
$pp ightarrow bar{b}j$	$1.5 imes 10^7 imes rac{1}{5000} = 3 imes 10^3$	3×10^{9}	$7.6 imes 10^{8}$	$6.0 imes 10^{6}$	
S/\sqrt{B}	-	12	54	93	

- * SM and BSM (d1=6, d2=0) signals produced with madgraph
- * Main backgrounds also produced with mad graph
 - ⇒bbγ, jjγ, jjj, bbj
- *****Detector effects simulated with DELPHES
- \star Optimization of the analysis selection
 - Explored many even shape variables

Selection Criteria (Efficiency)	BSM $pp \rightarrow h \rightarrow b\bar{b}\gamma$	SM $pp \rightarrow h \rightarrow b\overline{b}\gamma$	$pp ightarrow b \overline{b} \gamma$	$pp ightarrow b \overline{b} j$	$pp \rightarrow jj\gamma$	$pp \rightarrow jjj$
Generator level Cuts	100 %	100 %	100 %	100 %	100 %	100 %
$P_{T\gamma} \ge 80 { m GeV}$	8.64 %	9.52 %	14.75 %	24.15 %	16.35 %	25.59 %
$N_{bj} \ge 2$	0.61 %	1.85 %	4.37 %	5.39 %	0.069 %	0.14 %
$\Delta R_{b\gamma} \leq 1.5$	0.43 %	0.48 %	0.85 %	0.28 %	0.012 %	0.017 %
Sphericity ≥ 0.02	0.42 %	0.47 %	0.84 %	0.27 %	0.012 %	0.016 %
$100{ m GeV} \le m_{bar{b}\gamma} \le 135{ m GeV}$	0.19 %	0.19 %	0.0023 %	0.0022 %	0.00049 %	0.00068 %

P. Conde Muíño

Theory meets Experiment (14 Dec 18)

Results for $H \rightarrow bb\gamma$

• The invariant mass of Higgs candidate on log scale without

• The invariant mass of Higgs candidate after Sphericity and $\Delta R_{b\gamma}$ cut

 This channel could contribute in addition to ZH production, but quite challenging

Significance (S/\sqrt{B})				
Effective Coupling	$\mathcal{L}=3000\mathrm{fb^{-1}}$	$\mathcal{L}=1000\mathrm{fb^{-1}}$		
SM coupling	0.0056	0.0033		
$d_1 = 5 \ d_2 = 5$	1.95	1.13		
$d_1 = 6 \ d_2 = 0$	1.52	0.88		
$d_1 = 6 \ d_2 = 0 \ (BDT)$	2.04	1.18		

Probing HWW vertex in WH(bb)

- Angular variables sensitive to anomalous Spin/CP components in the vertices
- * Boosted regime enhances the sensitivity!!
- * Working on boosted Hbb search in WH production

ArXiv:1306.2573v2 (Godbole et al.)

$$\cos heta^* = rac{ec{p}_{l_1}^{(V)} \cdot ec{p}_V}{|ec{p}_{l_1}^{(V)}| \, |ec{p}_V|},$$

Conclusions

- The Run 2 is bringing a wealth of Higgs properties measurements
- Higgs couplings to quarks have recently being observed by the first time
 - H-> bb decay observation combining 13 TeV (76 fb-1) and 8 and 7 TeV pp collisions data Several channels
 - Observed also the VH associated production mode!
 - Signal strength compatible, in both cases, with SM expectations
- ***** Future:
 - ➡ Will require more precise measurements of the coupling vertices

Thank you!

* Acknowledgements

Thanks to the support from CERN/FIS-PAR/0008/2017, OE, FCT

Backup

P. Conde Muíño

Theory meets Experiment (14 Dec 18)

And what about quarks?

VH (Z→bb) analysis

Di-jet mass analysis

★ 3.6σ observed★ 3.5σ expected

$$\mu_{VH}^{bb} = 1.06^{+0.36}_{-0.33} = 1.06 \pm 0.20(\text{stat.})^{+0.30}_{-0.26}(\text{syst.})$$

Selection

C-lti-r	0-lepton 1-lepton		2-lepton	
Selection	-	e sub-channel	μ sub-channel	-
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton
Leptons	$0 \ loose \ leptons$	1 tight electron 27 CeV	1 tight muon	2 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	with $p_{\rm T} > 7 {\rm GeV}$ > 150 GeV	$p_{\rm T} > 27 \text{ GeV}$ > 30 GeV	$p_{\rm T}$ > 25 GeV	\geq 1 lepton with $p_{\rm T} > 27$ GeV
$m_{\ell\ell}$	-		_	81 GeV $< m_{\ell\ell} <$ 101 GeV
Jets	Exactly 2 / E	xactly 3 jets		Exactly 2 / \geq 3 jets
Jet $p_{\rm T}$		> 20 GeV > 30 GeV for	for $ \eta < 2.5$ $2.5 < \eta < 4.5$	
<i>b</i> -jets		Exactly 2	b-tagged jets	
Leading $b\text{-tagged}$ jet p_{T}		> 4	$5 \mathrm{GeV}$	
H_{T}	$>120~{\rm GeV}$ (2 jets), $>\!\!150~{\rm GeV}$ (3 jets)		_	_
$\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$		_	-
$\Delta \phi(ec{E}_{ ext{T}}^{ ext{miss}}, ec{bb})$	$> 120^{\circ}$		_	-
$\Delta \phi(ec{b_1},ec{b_2})$	$< 140^{\circ}$		_	_
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$		_	-
p_{T}^{V} regions	> 150	GeV		$75~{\rm GeV} < p_{\rm T}^V < 150~{\rm GeV}, > 150~{\rm GeV}$
Signal regions	-	$m_{bb} \ge 75~{ m GeV}$ o	r $m_{\rm top} \leq 225~{\rm GeV}$	Same-flavour leptons Opposite-sign charges ($\mu\mu$ sub-channel)
Control regions	-	$m_{bb} < 75 {\rm ~GeV}$ ar	nd $m_{\rm top}>225~{\rm GeV}$	Different-flavour leptons Opposite-sign charges

Simulation samples

Process	ME generator	ME PDF	PS and Hadronisation	UE model tune	Cross-section order
Signal, mass set to	125 GeV and $b\bar{b}$ branching fract	tion to 58%			
$\begin{array}{c} qq \rightarrow WH \\ \rightarrow \ell \nu b \bar{b} \end{array}$	Роwнед-Box v2 [76] + GoSam [79] + MiNLO [80,81]	NNPDF3.0NLO ^(*) [77]	Рутніа 8.212 [68]	AZNLO [78]	NNLO(QCD)+ NLO(EW) [82–88]
$qq ightarrow ZH ightarrow u u b ar{b} / \ell \ell b ar{b}$	Powheg-Box v2 + GoSam + MiNLO	NNPDF3.0NLO (\star)	Рутніа 8.212	AZNLO	$NNLO(QCD)^{(\dagger)} + NLO(EW)$
$gg ightarrow ZH ightarrow u u b ar{b}/\ell \ell b ar{b}$	Powheg-Box v2	NNPDF3.0NLO ^(*)	Рутніа 8.212	AZNLO	NLO+ NLL [89–93]
Top quark, mass se	et to $172.5 \mathrm{GeV}$				
$tar{t}$ s-channel t-channel Wt	Powheg-Box v2 [94] Powheg-Box v2 [97] Powheg-Box v2 [97] Powheg-Box v2 [100]	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [95] A14 A14 A14 A14	NNLO+NNLL [96] NLO [98] NLO [99] Approximate NNLO [101]
Vector boson + jet	s				
$ \begin{array}{c} W \to \ell \nu \\ Z/\gamma^* \to \ell \ell \\ Z \to \nu \nu \end{array} $	SHERPA 2.2.1 [71, 102, 103] SHERPA 2.2.1 SHERPA 2.2.1	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 [104, 105] Sherpa 2.2.1 Sherpa 2.2.1	Default Default Default	NNLO [106] NNLO NNLO
Diboson					
$\begin{array}{c} qq \rightarrow WW \\ qq \rightarrow WZ \\ qq \rightarrow ZZ \\ gg \rightarrow VV \end{array}$	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	Default Default Default Default	NLO NLO NLO NLO

Uncertainties in the signal strength

Source of une	σ_{μ}	
Total	0.259	
Statistical	0.161	
Systematic		0.203
Experimenta	l uncertainties	
Jets		0.035
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014
Leptons		0.009
	b-jets	0.061
b-tagging	c-jets	0.042
	light-flavour jets	0.009
	extrapolation	0.008
Pile-up		0.007
Luminosity		0.023
Theoretical a	and modelling uncer	tainties
Signal	0.094	
Floating nor	malisations	0.035
Z + jets		0.055
W + jets	0.060	
$t\overline{t}$	0.050	
Single top qu	0.028	
Diboson	0.054	
Multi-jet	0.005	
MC statistics	0.070	

Theory meets Experiment (14 Dec 18)