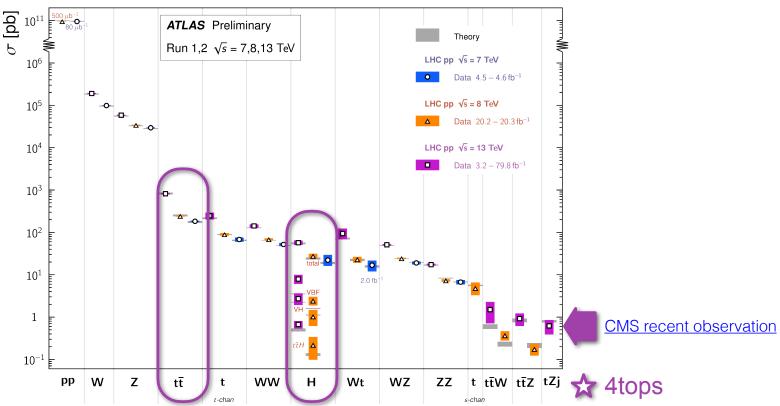


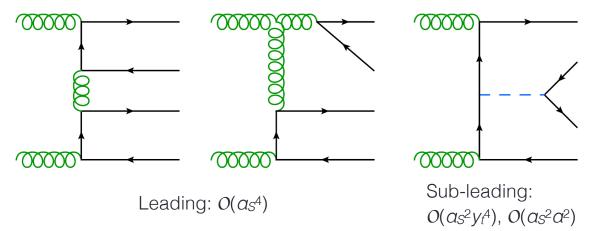
European Research Council

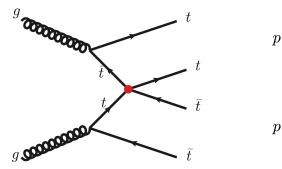

Search for 4-tops production at the LHC

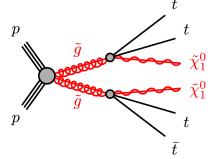
Yang Qin (Quake)

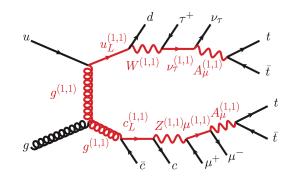
- Latest ATLAS and CMS results
- Current ATLAS analysis
- Modelling the ttbar background

Introduction

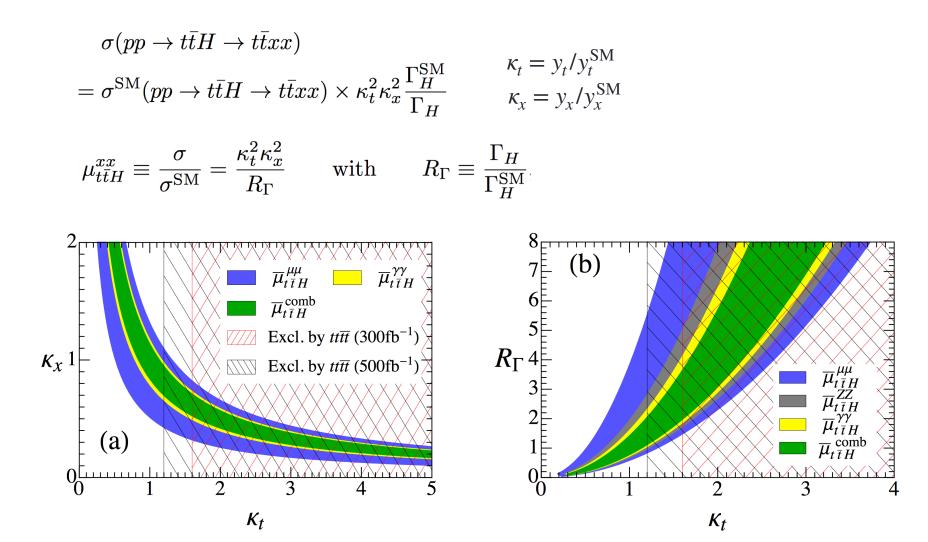

- 4-tops production has extremely small cross-section in SM
 - 9.2 fb at NLO QCD precision at 13 TeV arXiv:1405.0301 [hep-ph]
 - 30% scale and 6% PDF uncertainties

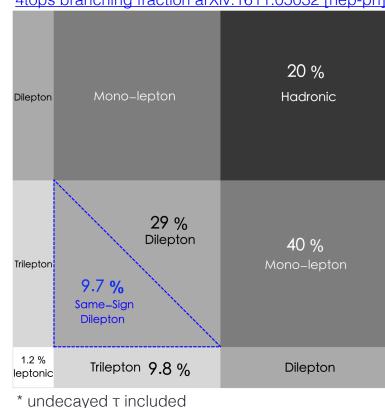

Standard Model Total Production Cross Section Measurements Status: July 2018


Introduction


 At LO, 72 (12) gg (qq') initiated diagrams arXiv:1611.05032 [hep-ph]

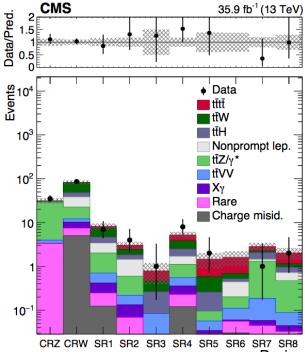
- Sensitive to top-Yukawa coupling (yt)
 - non-SM value of yt can change dramatically the production via an off-shell Higgs
- Many BSM theories may enhance the production cross-section
 - 2HDM: heavy / pseudo scalar Higgs (H/A)
 - EFT: contact interaction
 - SUSY
 - 2 universal extra dimensions (2UDM)




Introduction

 Example pheno study constraining top Yukawa coupling and Higgs width using ttH and 4-tops production (14 TeV) https://arxiv.org/abs/1602.01934

Latest ATLAS and CMS results

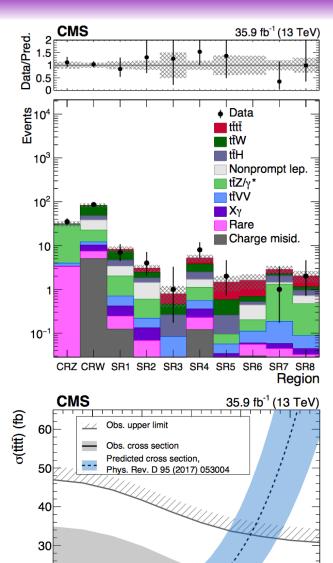

- CMS results with 2015+2016 data 35.9 fb⁻¹ EPJC 78 (2018) 140
 - SS dilepton and \geq 3 lepton channels
- ATLAS results with 2015+2016 data 36.1 fb⁻¹
 - SS dilepton and multilepton channels (SS/ML) arXiv:1807.11883 [hep-ex] Submitted to JHEP
 - single-lepton and OS dilepton channels (1L/OS), results combined with SS/ML channel <u>arXiv:1811.02305 [hep-ex] Submitted to PRD</u>
 - Compared to the SS/ML channel, larger branching fraction (>50%), but much larger background
 - Not the most sensitive channel, but could still improve sensitivity in the combination

4tops branching fraction arXiv:1611.05032 [hep-ph]

Latest CMS results

- CMS results with 2015+2016 data 35.9 fb⁻¹ EPJC 78 (2018) 140
 - SS dilepton and \geq 3 lepton channels
 - Dilepton (8 GeV) + H_T (300 GeV) trigger
 - 92% ee/eµ efficiency, 95% μµ efficiency
 - Selecting events with $H_T > 300$ GeV, $p_T^{miss} > 50$ GeV, low mass QCD veto, Z veto in ≥ 3 lepton channel (for ttZ)
 - 1.5% signal acceptance after baseline selection
 - Signal/control regions defined according to $N_{\text{lep}},\,N_{\text{jets}},\,N_{\text{b-jets}}$

Region


N_ℓ	$N_{\rm b}$	N _{jets}	Region		SM background	tītī	Total	Observed
	2	≤ 5	CRW	CRZ	31.7 ± 4.6	0.4 ± 0.3	32.1 ± 4.6	35
		6	SR1	CRW	83.7 ± 8.8	1.9 ± 1.2	85.6 ± 8.6	86
		7	SR2	SR1	7.7 ± 1.2	0.9 ± 0.6	8.6 ± 1.2	7
2		≥ 8	SR3	SR2	2.6 ± 0.5	0.6 ± 0.4	3.2 ± 0.6	4
	3	5,6	SR4	SR3	0.5 ± 0.3	0.4 ± 0.2	0.8 ± 0.4	1
		≥ 7	SR5	SR4	4.0 ± 0.7	1.4 ± 0.9	5.4 ± 0.9	8
	≥ 4	≥ 5	SR6	SR5	0.7 ± 0.2	0.9 ± 0.6	1.6 ± 0.6	2
≥3	2	≥ 5	SR7	SR6	0.7 ± 0.2	1.0 ± 0.6	1.7 ± 0.6	0
	≥3	≥ 4	SR8	SR7	2.3 ± 0.5	0.6 ± 0.4	2.9 ± 0.6	1
Inverted Z veto		CRZ	SR8	1.2 ± 0.3	0.9 ± 0.6	2.1 ± 0.6	2	

 $\frac{2.5}{|y_t'y_t^{\rm SM}|}$

Latest CMS results

- CMS results with 2015+2016 data 35.9 fb⁻¹ EPJC 78 (2018) 140
 - SS dilepton and \geq 3 lepton channels
 - 95% CL upper limit on cross-section 41.7 fb (~4.5 x σ_{SM})
 - Observed (expected) significance 1.6 (1.0) σ
 - * 95% CL limit on $\mid y_t \, / \, y_t^{\text{SM}} \mid < 2.1$

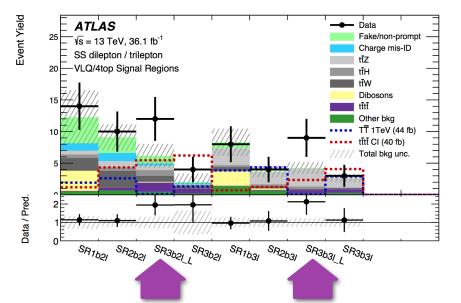
Source	Uncertainty (%)		
Integrated luminosity	2.5		
Pileup	0–6		
Trigger efficiency	2		
Lepton selection	4–10		
Jet energy scale	1–15		
Jet energy resolution	1–5		
b tagging	1–15		
Size of simulated sample	1–10		
Scale and PDF variations	10–15		
ISR/FSR (signal)	5–15		
ttH (normalization)	50		
Rare, X γ , t \overline{t} VV (norm.)	50		
t tZ/γ^* , ttW (normalization)	40		
Charge misidentification	20		
Nonprompt leptons	30–60		

20

10

0

0.5

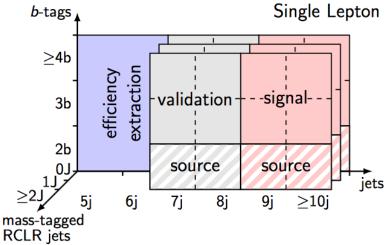

1.5

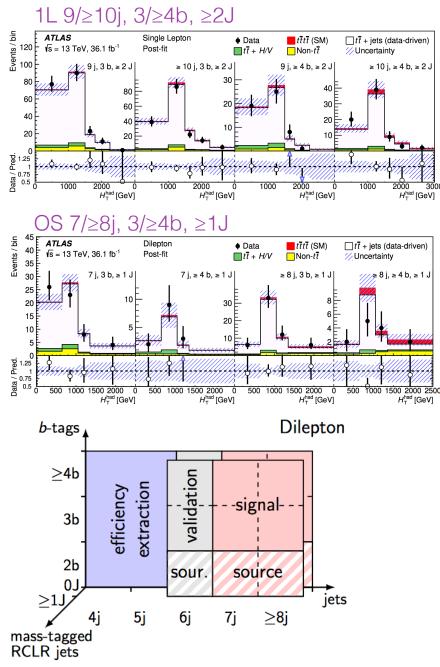
1

2

Latest ATLAS results

- ATLAS results with 2015+2016 data 36.1 fb⁻¹
 - SS/ML
 - combination of high pT single-lepton and low pT dilepton triggers 95% trigger efficiency
 - * $m_{ee} > 15 \text{ GeV}$ and $|m_{ee} 91| > 10 \text{ GeV}$ for SS events
 - events categorised according to N_{lep} and N_{b-jets} (N_{jets}), each category split into signal/validation regions using H_T and E_T^{miss}
 - main background
 - tt+V/H based on MC simulation and profiled in the likelihood fit
 - non-prompt leptons data driven technique

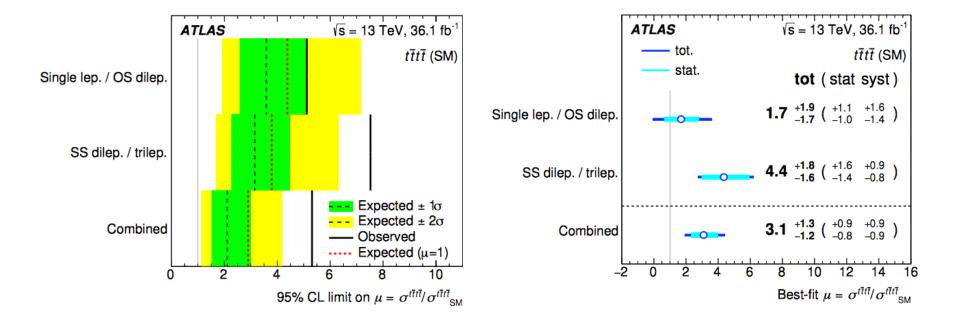

Region name	N_j	N_b	N_{ℓ}	Lepton charges	Kinematic criteria
VR1 <i>b</i> 2ℓ	≥ 1	1	2	++ or	$400 < H_{\rm T} < 2400 \text{ GeV} \text{ or } E_{\rm T}^{\rm miss} < 40 \text{ GeV}$
SR1b2ℓ	≥ 1	1	2	++ or	$H_{\rm T}$ > 1000 GeV and $E_{\rm T}^{\rm miss}$ > 180 GeV
VR2b2ℓ	≥ 2	2	2	++ or	$H_{\rm T} > 400 { m ~GeV}$
SR2b2ℓ	≥ 2	2	2	++ or	$H_{\rm T}$ > 1200 GeV and $E_{\rm T}^{\rm miss}$ > 40 GeV
VR3b2ℓ	≥ 3	≥ 3	2	++ or	$400 < H_{\rm T} < 1400 \text{ GeV} \text{ or } E_{\rm T}^{\rm miss} < 40 \text{ GeV}$
SR3b2ℓ_L	≥ 7	≥ 3	2	++ or	$500 < H_{\rm T} < 1200 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 40 \text{ GeV}$
SR3 <i>b</i> 2ℓ	≥ 3	≥ 3	2	++ or	$H_{\rm T}$ > 1200 GeV and $E_{\rm T}^{\rm miss}$ > 100 GeV
VR1b3l	≥ 1	1	3	any	$400 < H_{\rm T} < 2000 \text{ GeV} \text{ or } E_{\rm T}^{\rm miss} < 40 \text{ GeV}$
SR1b3ℓ	≥ 1	1	3	any	$H_{\rm T} > 1000 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 140 \text{ GeV}$
VR2b3ℓ	≥ 2	2	3	any	$400 < H_{\rm T} < 2400 \text{ GeV} \text{ or } E_{\rm T}^{\rm miss} < 40 \text{ GeV}$
SR2b3ℓ	≥ 2	2	3	any	$H_{\rm T} > 1200 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 100 \text{ GeV}$
VR3b3ℓ	≥ 3	≥ 3	3	any	$H_{\rm T} > 400 { m ~GeV}$
SR3b3ℓ_L	≥ 5	≥ 3	3	any	$500 < H_{\rm T} < 1000 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 40 \text{ GeV}$
SR3b3ℓ	≥ 3	≥ 3	3	any	$H_{\rm T} > 1000 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 40 \text{ GeV}$


Latest ATLAS results

- ATLAS results with 2015+2016 data 36.1 fb⁻¹
 - 1L/OS

Requirement	Single-lepton	Dilepton		
	$E_{\rm T}^{\rm miss} > 20 \text{ GeV}$ $E_{\rm T}^{\rm miss} + m_{\rm T}^W > 60 \text{ GeV}$	$m_{\ell\ell} > 50 \text{ GeV}$ $ m_{\ell\ell} - 91 \text{ GeV} > 8 \text{ GeV}$		

- events categorised according to $N_{jets},\,N_{b\text{-jets}}$ and $N_{\text{RC-jets}}$
- main background from ttbar+jets
 - ttbar+HF jets in signal regions data-driven method

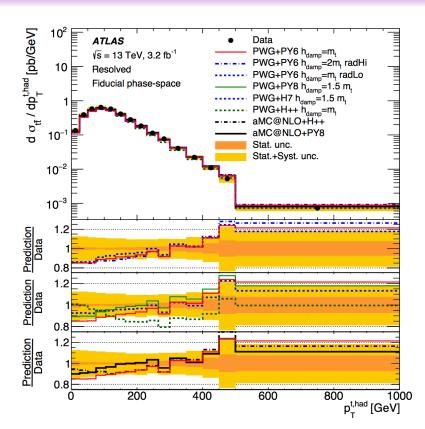

Latest ATLAS results	Uncertainty source	$\pm \Delta \mu$		
	$t\bar{t}$ +jets modeling	+1.2 -0.96		
 ATLAS results with 2015+2016 data 36.1 fb⁻¹ 	Background-model statistical uncertainty	+0.91 -0.85		
	Jet energy scale and resolution, jet mass	+0.38 -0.16		
Uncertainties	Other background modeling	+0.26 -0.20		
	<i>b</i> -tagging efficiency and mis-tag rates	+0.33 -0.10		
• 1L/OS:	JVT, pileup modeling	+0.18 -0.073		
	$t\bar{t} + H/V$ modeling	+0.053 -0.055		
 systematic dominated 	Luminosity	+0.050 -0.026		
 primarily tt+jets modelling 	Total systematic uncertainty	+1.6 -1.4		
• SS/ML:	Total statistical uncertainty	+1.1 -1.0		
 limited by stat. 	Total uncertainty	+1.9 -1.7		

· dominant systematic - fake background and other background modelling

Uncertainty source	SR1 <i>b2ℓ</i> [%]	SR2 <i>b</i> 2ℓ [%]	SR3 <i>b</i> 2ℓ_L [%]	SR3 <i>b</i> 2ℓ [%]	SR1 <i>b3ℓ</i> [%]	SR2b3ℓ [%]	SR3 <i>b</i> 3ℓ_L [%]	SR3b3ℓ [%]
Jet energy resolution	3	1	5	6	3	5	3	4
Jet energy scale	3	3	9	6	3	5	11	6
<i>b</i> -tagging efficiency	5	3	6	7	3	4	9	9
Lepton ID efficiency	2	1	1	1	3	3	2	3
Pile-up reweighting	5	2	3	3	3	5	1	6
Luminosity	1	1	2	2	2	2	2	2
Fake/non-prompt	20	12	13	8	7	2	3	1
Charge mis-ID	2	3	1	2	-	-	-	-
Cross-section × acceptance	25	13	22	32	32	26	21	24

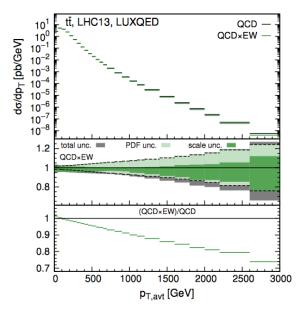
Latest ATLAS results

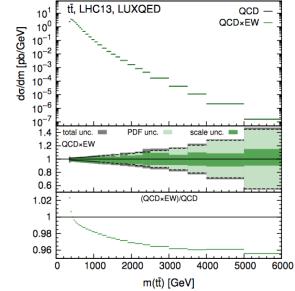
- ATLAS results with 2015+2016 data 36.1 fb⁻¹
 - Combined results
 - Observed (expected) 95% CL upper limit on cross-section 5.3 (2.1) x σ_{SM}
 - Observed (expected) significance 2.8 (1.0) σ
 - SS/ML: 3.0 (0.8) σ
 - 1L/OS: 1.0 (0.6) σ

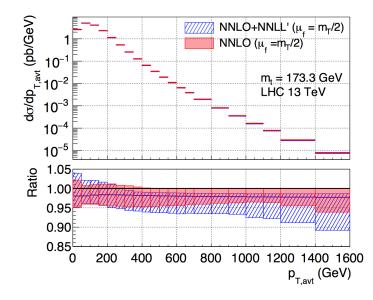


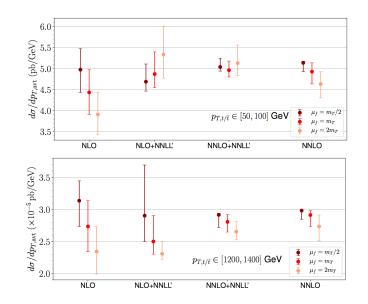
Current ATLAS analysis overview

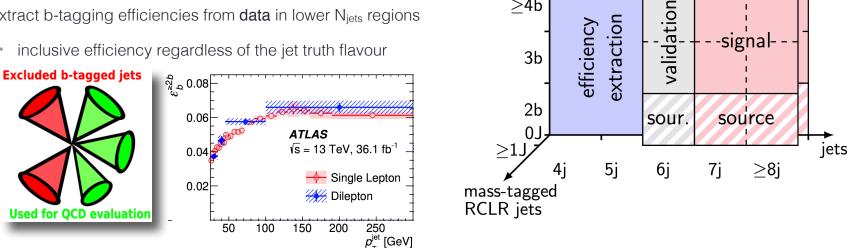
- Based on the previous analyses
 - working towards full Run2 dataset
 - a combined effort from SS/ML and 1L/OS
- At the moment focusing on improving the background modelling
 - SS/ML channel mainly focusing on non-prompt lepton contribution
 - Matrix Method (data-driven)
 - template fit method (MC-based)
 - 1L/OS channel mainly focusing on modelling ttbar+jets ideally also reduce the relevant modelling uncertainties
- Techniques to extract the signal to be reviewed previous studies used simply cut-and-count strategy
 - use boosted decision tree to reconstruct the 4-tops system mainly the jet combinatorics
 - investigate kinematic variables sensitive to the 4-tops signal topology


Modelling of ttbar background


- Most important background ttbar+jets
- Infamous mismodelling of ttbar with current simulations
 - smaller discrepancy for lower energy regime
 - often can be tuned to data
 - · we work in an extreme phase space
 - high energy scale
 - higher order corrections
 - high jet and b-jet multiplicities
 - Sherpa+OpenLoops NLO ttbb prediction with multi-leg
- Improvement from the theory side
 - NNLO QCD + NLO EW corrections <u>arXiv:1705.04105 [hep-ph]</u>
 - NNLO + NNLL' arXiv: 1803.07623 [hep-ph]
- Experimentalists' approaches
 - · Data-driven method based tag-rate-function (ttTRF), assisted with corrections from MC
 - MC-based method, assisted with data-driven corrections


Higher order corrections


 Reweighting to NNLO QCD + NLO EW prediction on ttbar production


- NNLO+NNLL'
 - important for boosted tops
 - reduces dependence on scale choice

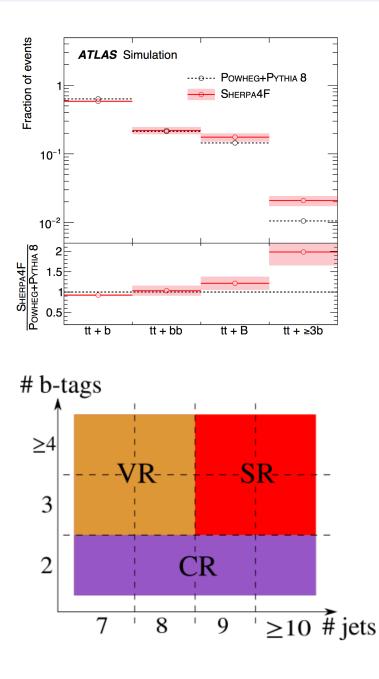
Data-driven ttbar estimate

- Data-driven method based on the tag-rate-function (ttTRF) •
 - Extract b-tagging efficiencies from data in lower N_{iets} regions •
 - inclusive efficiency regardless of the jet truth flavour •

b-tags

 \geq 4b

- Using the tag-rate-function (TRF) to promote data events in 2b regions (source regions) to higher b-tag regions
- Apply correction factors based on MC .
 - Apply the same procedure to ttbar MC as in data •
 - Take the non-closure between TRF and pure MC prediction as correction factor 0
 - Two effects taken into account .
 - Residual kinematic dependence .
 - Dependence of the efficiencies due to the extrapolation to higher Niets


Dilepton

MC-based method

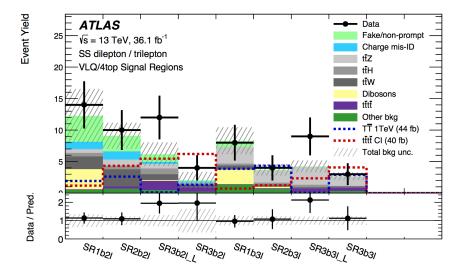
- Originated from <u>ATLAS ttH(bb) analysis</u>
- Baseline: 4FS Sherpa+OpenLoops (NLO ttbb production at ME level)
 - sophisticated ttbar categorisation based on the type and number of extra jets
 - reweighting to Sherpa
- Data-driven corrections to diminish the kinematic mismodelling
 - Derive parameterised reweighting factors in 2 b-tags control regions (CR)

$$w \propto \frac{\text{Data} - \text{MC}^{\text{non}-t\bar{t}}}{\text{MC}^{t\bar{t}}}$$

- Apply higher b-tags regions: validation regions (VR) and eventually signal regions (SR)
- Systematic uncertainties from Sherpa and the reweighting
 - profiling in the likelihood fit

Summary

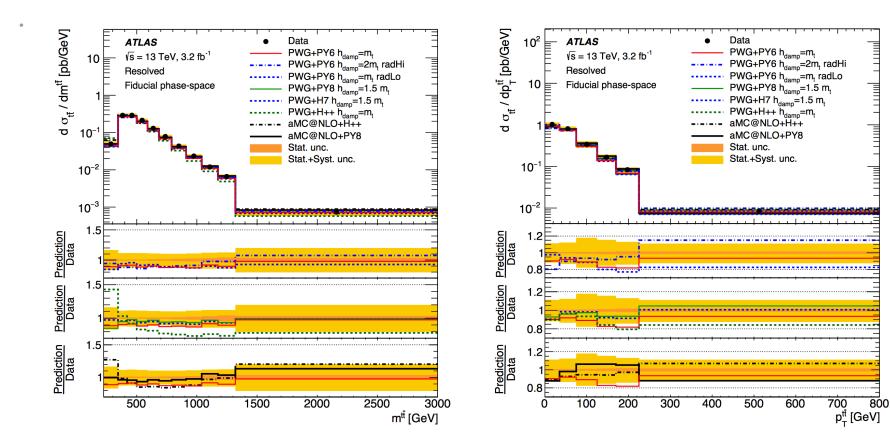
- 4-tops production has small cross-section in SM, but an interesting and important process for testing the SM and probing BSM signals
- ATLAS and CMS have both shown increasing interest in this process as the amount of LHC data ramps up
- ATLAS is working towards a combination of all sensitive channels, 1L/OS + SS/ML
 - Current focusing on improving background modelling
 - In the 1L/OS channel, ttbar background modelling is critical
 - · Potential improvement are being studied: data-driven and MC-based techniques
- · Expect a much increased sensitivity with
 - full Run2 data
 - improved background modelling
 - MVA signal extraction



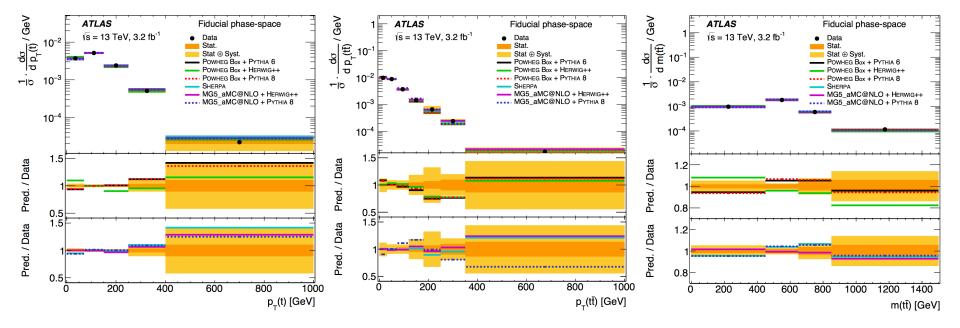
MAY THE TOPS BE WITH YOU

Thanks for your attention

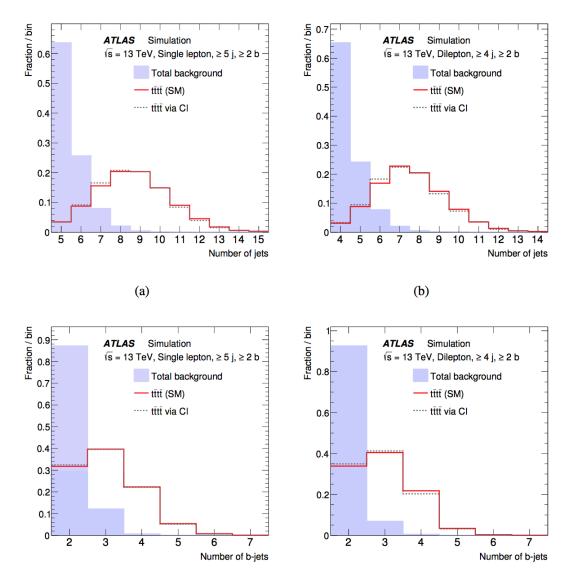
BACKUP


Latest ATLAS results

Source	SR1 <i>b</i> 2ℓ	SR2 <i>b</i> 2ℓ	SR3b2ℓ_L	SR3 <i>b</i> 2ℓ	
tŦW	$2.04 \pm 0.14 \pm 0.49$	$2.68 \pm 0.15 \pm 0.55$	$0.95 \pm 0.11 \pm 0.31$	$0.40 \pm 0.06 \pm 0.10$	
$t\bar{t}Z$	$0.58 \pm 0.08 \pm 0.10$	$0.95 \pm 0.11 \pm 0.17$	$0.72 \pm 0.11 \pm 0.19$	$0.11 \pm 0.05 {}^{+0.13}_{-0.10}$	
Dibosons	$3.2 \pm 1.5 \pm 2.4$	< 0.5	$0.13 \pm 0.13 \begin{array}{c} +0.27 \\ -0.00 \end{array}$	< 0.5	
tīH	$0.56 \pm 0.07 \pm 0.07$	$0.57 \pm 0.10 \pm 0.09$	$0.91 \pm 0.11 \pm 0.22$	$0.19 \pm 0.05 \pm 0.07$	
tīttī	$0.10 \pm 0.01 \pm 0.05$	$0.44 \pm 0.03 \pm 0.23$	$1.46 \pm 0.05 \pm 0.74$	$0.75 \pm 0.04 \pm 0.38$	
Other bkg	$0.52 \pm 0.07 \pm 0.14$	$0.68 \pm 0.09 \pm 0.24$	$0.47 \pm 0.08 \pm 0.18$	$0.20 \pm 0.04 \pm 0.06$	
Fake/non-prompt	4.1 $^{+1.6}_{-1.4} \pm 2.4$	2.5 $^{+1.0}_{-0.9} \pm 1.1$	1.2 $^{+0.9}_{-0.7} \pm 0.6$	$0.20 {}^{+0.46}_{-0.20} \pm 0.16$	
Charge mis-ID	$1.17 \pm 0.10 \pm 0.27$	$1.29 \pm 0.10 \pm 0.28$	$0.32 \pm 0.04 \pm 0.09$	$0.21 \pm 0.04 \pm 0.04$	
Total bkg	12.3 $^{+2.2}_{-2.1} \pm 3.4$	9.1 $^{+1.2}_{-1.1} \pm 1.2$	6.2 $^{+1.0}_{-0.8} \pm 1.2$	$2.0 {}^{+0.5}_{-0.2} \pm 0.3$	
Data yield	14	10	12	4	
BSM significance	0.31	0.25	1.7	1.1	
SM <i>tītī</i> significance	0.33	0.38	2.1	1.6	
Source	SR1b3ℓ	SR2b3ℓ	SR3b3ℓ_L	SR3b3ℓ	
tĪW	$0.66 \pm 0.08 \pm 0.20$	$0.38 \pm 0.05 \pm 0.11$	$0.21 \pm 0.05 \pm 0.09$	$0.15 \pm 0.04 \pm 0.05$	
tīZ	$2.66 \pm 0.15 \pm 0.43$	$1.90 \pm 0.14 \pm 0.42$	$2.80 \pm 0.17 \pm 0.58$	$1.47 \pm 0.14 \pm 0.28$	
Dibosons	$2.3 \pm 0.7 \pm 1.7$	$0.22 \pm 0.16 \pm 0.27$	< 0.5	< 0.5	
tīH	$0.30 \pm 0.04 \pm 0.04$	$0.28 \pm 0.05 \pm 0.05$	$0.38 \pm 0.06 \pm 0.07$	$0.10 \pm 0.03 \pm 0.02$	
tītī	$0.06 \pm 0.01 \pm 0.03$	$0.13 \pm 0.02 \pm 0.06$	$0.58 \pm 0.04 \pm 0.29$	$0.59 \pm 0.03 \pm 0.30$	
Other bkg.	$1.37 \pm 0.13 \pm 0.45$	$0.65 \pm 0.10 \pm 0.27$	$0.17 \pm 0.09 \pm 0.10$	$0.31 \pm 0.07 \pm 0.11$	
Fake/non-prompt	$1.0 {}^{+0.6}_{-0.5} \pm 0.6$	$0.14 {}^{+0.31}_{-0.12} \pm 0.09$	$0.00 {}^{+0.38}_{-0.00} {}^{+0.09}_{-0.00}$	$0.03 {}^{+0.15}_{-0.02} \pm 0.00$	
Total bkg	8.3 $^{+0.9}_{-0.8} \pm 1.8$	3.7 $^{+0.6}_{-0.3} \pm 0.4$	$4.2 {}^{+0.4}_{-0.2} \ \pm \ 0.7$	$2.7 \pm 0.2 \pm 0.5$	
Data yield	8	4	9	3	
BSM significance	-0.09	0.14	1.8	0.19	
SM <i>tītī</i> significance	-0.07	0.21	2.1	0.6	

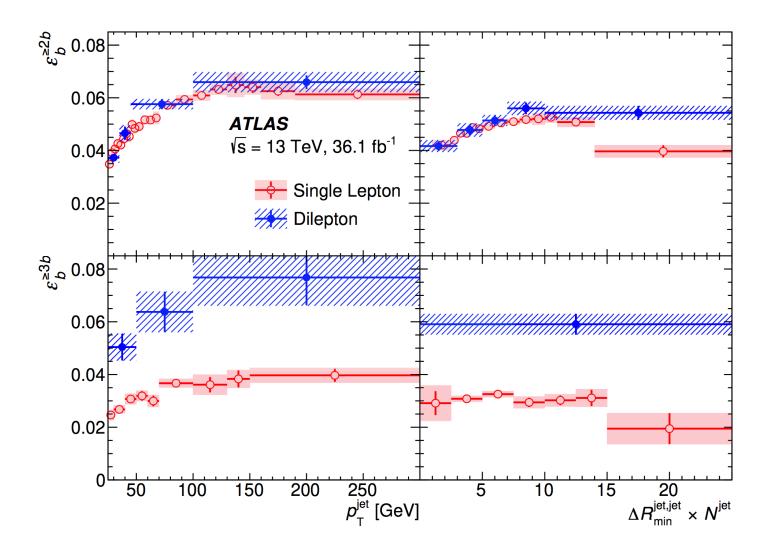

Modelling of ttbar background

· Infamous mismodelling of ttbar with current simulations on the market



Modelling of ttbar background

· Infamous mismodelling of ttbar with current simulations on the market


1L/OS

(d)

Data-driven ttbar estimate - efficiencies

