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Softly broken Z2 symmetric 2HDM Higgs potential

and CP is explicitly and not spontaneously broken

• m2
12 and λ5 real 2HDM

• m2
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2 charged, H±, and 3 neutral CP-conserving - h, H and A
CP-violating - h1, h2 and h3

rotation angles in the neutral sector CP-conserving – α
CP-violating - α1, α2 and α3soft breaking parameter
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CP-violating – Re(m2
12)
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"Pseudoscalar" component (doublet)

CP-violating 2HDM

ghVV
2HDM = sin(β − α)ghVV

SM

ghVV
C2HDM = cos α2 ghVV

2HDM

h125 couplings measurements

ℒhZZ = κ
m2

Z

v
hZμZμ +

α
v

hZμ∂α∂αZμ +
β
v

hZμνZμν +
γ
v

hZμνZ̃μν

Only term in the C2HDM at tree-level

can be used to 
constraint the c2hdm at 

loop-level



CP - what have ATLAS and CMS measured so far?

Correlations in the momentum distributions of leptons produced in the decays

S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Phys. Lett. B 553, 61 (2003).  

C. P. Buszello, I. Fleck, P. Marquard, J. J. van der Bij, Eur. Phys. J. C32, 209 (2004)

h → ZZ* → l̄ll̄l
h → WW* → (l1ν1) (l2ν2)

Conclusions:  
a)If h is a CP-eigenstate it is not (really not!) cp-odd 

b) other terms in the effective lagrangian can only be used to 
constraint the c2hdm at loop-level

We need to test the Yukawa couplings

YTypeII
C2HDM = c2Y

TypeII
2HDM − iγ5s2tβ bottom, tau

YTypeII
C2HDM = c2Y

TypeII
2HDM − iγ5

s2

tβ
top



In the CP-odd vs. CP-even plane, the bounds on the Yukawa 
couplings look like rings. 



Bounds on the Yukawa couplings

With the most relevant experimental and theoretical constraints
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Figure 1. C2HDM Type I: for sample 1 (dark) and sample 2 (light) left: mixing angles α1 and α2 of
the C2HDM mixing matrix R only including scenarios where H1 = h125; right: Yukawa couplings.
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Figure 2. Type II, H1 = h125: mixing angles α1 and α2 of the C2HDM Type II mixing matrix R
for sample 1 (dark) and sample 2 (light).

The maximum value of this angle can be understood from the bound 0.79 < µV V <

1.48. In fact, as previously shown in [17] the fact alone that µV V > 0.79 forces the angle |α2|
to be below ≈ 27o. Coming from the bound on µV V , this constraint will be approximately

the same for all types (before imposing EDM constraints), as will become clear in the

next plots.

We are also interested in the wrong-sign regime, defined by a relative sign of the Yukawa

coupling compared to the Higgs-gauge coupling, realized for ceb < 0. As shown previously

in [82, 83], the right plot again demonstrates that the wrong-sign regime is in conflict with

the Type I constraints because the Yukawa couplings cannot be varied independently.

In figure 2 we present the distributions of the angle α1 and α2 for samples 1 and 2 and

for a Type II model. The EDM constraints, applied in our sample 1, strongly reduce |α2| to
small values. Only for scenarios around the maximal doublet mixing case with α1 ≈ π/4,

α2 can reach values of up to ∼ ±20◦.

The phenomenological implications of the reduced CP-violating mixing angle in Type

II when h125 = H1 are demonstrated in figure 3. It shows the distribution of the CP-odd

component cof versus the CP-even component cef of the h125 Yukawa coupling as defined

in eq. (2.24) to bottom quarks and tau leptons (left) and top quarks (right). As can be
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Figure 3. C2HDM Type II, h125 = H1: Yukawa couplings to bottom quarks and tau leptons (left)
and top quarks (right) for sample 1 (dark) and sample 2 (light).

Figure 4. C2HDM Type II, h125 = H2: Yukawa couplings to bottom quarks (left) and top quarks
(right) for sample 1 (dark) and sample 2 (light).

inferred from figure 3 (left) the Higgs data alone still allow for vanishing scalar couplings

to down-type quarks (ceb = 0), as discussed in [17]. The inclusion of the EDM constraints,

however, clearly rules out this possibility when h125 = H1. Nevertheless, the wrong-sign

regime (ceb < 0) is still possible in the C2HDM for down-type Yukawa couplings. The

electron EDM has no discernable effect on the allowed coupling to up-type quarks, as can

be read off from the right plot.

The situation changes when we take Type II with h125 = H2, as shown in figure 4.

One can still find scenarios where the top coupling is mostly CP-even (cet ≃ 1), while the

bottom coupling is mostly CP-odd (cob ≃ 1). It is noteworthy that the electron EDM kills

all such points in Type II when h125 = H1, but that they are still allowed in Type II

when h125 = H2.

In table 3 we present three benchmark scenarios in Type II with large CP-violation

in the Yukawa sector. The first scenario, BP2m, has maximal cob with nearly vanishing
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ghbb
C2HDM = (cos α2

cos α1

cos β
− i sin α2 tan β γ5 ) ghff

SM

cos 20o = 0.94 sin 20o = 0.34

tan β > 1

EDMs

1H2+i`B+ .BTQH2 JQK2Mib

(a) (b) (c) (d)

Figure 1: Barr-Zee diagrams, which contribute to fermionic EDMs at two-loop level.

measurements in discrimination of 2HDMs, and also prospects of future experiments. Sec. 6 is
devoted to conclusions and discussion. Notations and details of the calculation are given in the
Appendices.

2 Models

We briefly review the models discussed in this paper. We have two Higgs doublets, H1 and H2,
and they have the vacuum expectation values (VEVs). The Higgs doublets are parametrized as
follows,

Hi =

(
π+i

1√
2

(
vi + σi − iπ3i

)
)

, (i = 1, 2). (2.1)

In order to avoid the dangerous FCNC problems, we introduce the Z2 symmetry. The Z2 symmetry
is assumed to be softly broken so that the domain-wall formation in the early universe is suppressed.
Under this symmetry, the Higgs doublets are translated into H1 → +H1 and H2 → −H2, and the
Higgs potential is given as
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The third and last terms in this potential contain complex parameters. While one of them can
be eliminated by redefinition of Higgs fields, another phase is physical so that CP symmetry is
broken. In this paper we take the Higgs VEVs, v1 and v2, real using the gauge symmetry and also
redefinition of a Higgs field. In this basis, two phases in the potential are related to each others by
the stationary condition of the potential, V ′ = 0. In this paper we choose φ as an input parameter
for CP violation.

We also use the following variables for convenience in this paper,

cos β =
v1
v
, sin β =

v2
v
, (2.3)

M2 ≡
v21 + v22
v1v2

Rem2
3. (2.4)

2

= 1H2+i`B+ .BTQH2 JQK2Mib U1.JbV Q7 72`KBQMb �`2 *S@pBQH�iBM;
[m�MiBiB2bX

= :QQ/ HBKBib QM i?2 2H2+i`QM 1.J (RjRyXd8j9- �*J1)
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μVV > 0.79 ⇒ cos α2 > 0.89 ⇒ α2 < 27o

Fontes, Muhlleitner, Romão, RS, Silva, Wittbrodt, JHEP 1802 (2018) 073.



EDMs constraints completely kill large pseudoscalar components in Type II. 
Not true in Flipped and Lepton Specific. 

EDMs act differently in the different Yukawa versions of the model. 
Cancellations between diagrams occur. 

CP-odd coupling proportional to sinα2 tanβ 



Predicted precision for CLIC

Parameter Relative precision [76,77]

350 GeV +1.4 TeV +3.0 TeV
500 fb�1 +1.5 ab�1 +2.0 ab�1

HZZ 0.43% 0.31% 0.23%
HWW 1.5% 0.15% 0.11%
Hbb 1.7% 0.33% 0.21%
Hcc 3.1% 1.1% 0.75%
Htt � 4.0% 4.0%
H⌧⌧ 3.4% 1.3% <1.3%
Hµµ � 14% 5.5%
Hgg 3.6% 0.76% 0.54%
H�� � 5.6% < 5.6%

Table 4: Results of the model-dependent global Higgs fit on the expected precisions of the Hii (see text). Entries
marked “�” cannot be measured with su�cient precision at the given energy. We call the first (350 GeV) scenario
Sc1, the second (1.4 TeV) Sc2 and the third (3.0 TeV) Sc3.

which at tree-level is just the ratio of the Higgs coupling in the BSM model and the corresponding
SM Higgs coupling. We have called the three benchmarks scenarios Sc1 (350 GeV), Sc2 (1.4
TeV) and Sc3 (3.0 TeV). In this table we can see the foreseen precisions that are expected to
be attained for each Hii. With these predictions we can now ask what is the e↵ect on the
parameter space of each model presented in the previous section. This in turn will tell us how
much an extra component from either a singlet (or more singlets) or a doublet contributes to the
h125 scalar boson. Clearly, if no new scalar is discovered one can only set bounds on the amount
of mixing resulting from the addition of extra fields. In the case of a CP-violating model it is
possible to set a bound on the ratio of pseudoscalar to scalar Yukawa couplings, where there is
an important interplay with the results from EDM measurements. The results presented in this
section always assume that the measured central value is the SM expectation, meaning that all
Hii in Table 4 have a central value of 1. Small deviations from the central value will not have a
significant e↵ect on our results because the errors are very small. If significant deviations from
the SM predicted values are found the data has to be reinterpreted for each model.

Starting with the simplest extension, the CxSM, there are either one or two singlet compo-
nents that mix with the real neutral part of the Higgs doublet. In the broken phase, where there
are no dark matter candidates, the admixture is given by the sum of the squared mixing matrix
elements corresponding to the real and complex singlet parts, i.e.

⌃CxSM

i = (Ri2)
2 + (Ri3)

2
, (4.43)

with the matrix R defined in Eq. (2.3). If a dark matter candidate is present one of the Rij , j =
2, 3, is zero. In any case the Higgs couplings to SM particles are all rescaled by a common factor.
Therefore, we just need to consider the most accurate Higgs coupling measurement to get the
best constraints on the Higgs admixture. The maximum allowed singlet admixture is given by
the lower bound on the global signal strength µ which at present is

⌃CxSM

max LHC ⇡ 1� µmin ⇡ 11% . (4.44)

In CLIC Sc1 the most accurate measurement is for the scaled coupling HZZ , which would give

⌃CxSM

max CLIC@350GeV
⇡ 0.85% , (4.45)

11

LHC today

Ψi(Σ1) ≤ 0.85 % from κZZ

All models become very similar and 
hard to distinguish.

Azevedo, Ferreira, Muhlleitner, RS, Wittbrodt, 1808.00755

Abramowicz eal, 1307.5288. 
CLICdp, Sicking, NPPP, 273-275, 801 (2016)

coupling close to one does not require the Yukawa couplings of the other Higgs bosons to be
small. The resulting tt̄H cross sections in the N2HDM and C2HDM can indeed be comparable
or even larger than the ⌫⌫̄H cross section. Therefore, tt̄H production becomes a highly relevant
search channel if no additional Higgs bosons are discovered during the 350 GeV run.

Figure 11: Total rates for e
+
e
� ! tt̄H" ! tt̄bb̄ for the type 1 N2HDM and C2HDM and CxSM. No 350 GeV

CLIC constraints (left) and with constraints (right).

6 Conclusions

We have investigated extensions of the SM scalar sector in several specific models: the CxSM,
the 2HDM, C2HDM and N2HDM in the Type I and Type II versions as well as the NMSSM. The
analysis is based on three CLIC benchmarks with centre-of-mass energies of 350 GeV, 1.4 TeV
and 3 TeV. For each benchmark run, the precision in the measurement of the Higgs couplings
was used to study possible deviations from the – CP-even and doublet-like – expected behaviour
of the discovered Higgs boson. We concluded that the constraints on the admixtures of both a
singlet and a pseudoscalar component to the 125GeV Higgs boson, improve substantially from
tens of percent to well below 1% when going from the LHC to the last stage of CLIC. In fact, as
shown in [5], after the LHC Run 1 the constraints on the admixtures were as shown in table 5,
where ⌃ stands for the singlet admixture and  is the pseudoscalar admixture. As noted in [5]
the upper bound on  for the C2HDM type II is mainly due to the EDM constraints.

Model CxSM C2HDM II C2HDM I N2HDM II N2HDM I NMSSM

(⌃ or )
allowed

11% 10% 20% 55% 25% 41%

Table 5: Allowed singlet and pseudoscalar (for the C2HDM) admixtures.

With the CLIC results the limits on the admixtures are completely dominated by the mea-
surement of HZZ for Sc1 and by HWW for Sc2 and Sc3 through the unitarity relation


2

ZZ,WW + /⌃  1 (6.49)

where the sum rule includes the factor Ri3, which is either the pseudoscalar, or the singlet
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Figure 6: Same as Fig. 5, but after imposing the constraints on the Higgs couplings from CLIC@350GeV.

Finally, Fig. 6 is the same as Fig. 5 with the extra constraint of imposing the bounds coming
from the CLIC@350GeV run. The results from the 350 GeV run turn out to be so restrictive
that the allowed parameter space is heavily reduced in all models. In particular, all points of the
NMSSM are excluded, considering that the measurements have the SM central values and no
new physics was found 7. The behaviour is very similar for all models and in this case a deviation
from the SM expectation could exclude some models. However, since we are already at the %
level electroweak radiative corrections would have to be taken into account for the di↵erent
models. Note that because e

+
e
� ! t̄th (for which both Yukawa couplings and Higgs gauge

couplings contribute) is not kinematically allowed for 350 GeV, the study of the correlations
between this process and associated or W -fusion cross sections (for which only Higgs gauge
couplings contribute) can only be performed for 1.4 TeV.

7Note that the SM-like limit is only attained for vanishing singlet admixtures.
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If no new physics is discovered and the measured values 
are in agreement with the SM predictions, the singlet and 

pseudoscalar components will be below the % level.

Beware of radiative corrections.

How will it look in the future?



How will it look in the future?

ΨC2HDM
i = R2

i3 C2HDM - pseudoscalar component.

Unitarity ⇒ κ2
ZZ,WW + Ψi(Σ1) ≤ 1

The deviations can be written in terms of the rotation matrix from gauge to mass eigenstates.

Azevedo, Ferreira, Muhlleitner, RS, Wittbrodt, 1808.00755

h1

h2

h3

= R (
ρ
η
ρS) R = [Rij] =

c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3

for all Type I Yukawa couplings. One can then expect, by the end of the CLIC operation, all
pseudoscalar (scalar) Type I Yukawa couplings to be less than roughly 5% (0.5 %) away from
the SM expectation. We again stress that this result assumes that experiments will not see
deviations from the SM.

Recently, in [78] a study was performed for a 250 GeV electron-positron collider for Hig-
gsstrahlung events in which the Z boson decays into electrons, muons, or hadrons, and the
Higgs boson decays into ⌧ leptons, which subsequently decay into pions. The authors found
that for an integrated luminosity of 2 ab

�1, the mixing angle between the CP-odd and CP-even
components, defined as

Li = g⌧̄ [cos CP + i�5 sin CP ] ⌧Hi , (4.47)

could be measured to a precision of 4.3o which means that this is the best bound if the central
measured value of the angle is zero. Their result is translated into our notation via

tan ⌧

CP =
c
o(Hi⌧̄ ⌧)

ce(Hi⌧̄ ⌧)
. (4.48)

Taking into account the values in Fig. 1 (right) we obtain bounds on  top

CP
=  

bottom

CP
=  

⌧

CP
,

for Type I, (by looking at the maxima and minima of each component in the plot) that are of
the order of 6o for CLIC@350GeV and 3o for CLIC@3TeV. Therefore the indirect bounds are of
the same order of magnitude as the direct ones.

Figure 2: Mixing angles ↵2 vs. ↵1 (left) and c
o

b vs. c
e

b (right) for the C2HDM Type II. The blue points are for
Sc1 but without the constraints from Hgg and H�� ; the green points are for Sc1 including Hgg and the red
points are for Sc3 including Hgg and H�� .

In Fig. 2 (left) we present the mixing angles ↵2 vs. ↵1 for the C2HDM Type II. In the right
panel we again show the pseudoscalar component of the b-quark Yukawa coupling c

o

b
vs. its

scalar component ce
b
. The blue points are for Sc1 without the constraints from Hgg and H�� .

These loop induced couplings are the only ones where interference between Yukawa couplings
and Higgs gauge couplings occur. Therefore, whatever the precision on the measurement of tree-
level couplings is, the result will always be a ring in that plane, that will become increasingly
thiner with growing precision. However, even for CLIC@350GeV, if the constraint for Hgg is
included, the ring is reduced to the green arch shown in the figure. By the end of the CLIC

13



The SM-like Higgs coupling to ZZ(WW) relative to the corresponding SM coupling is

YTypeII
C2HDM = c2Y

TypeII
2HDM − iγ5s2tβ bottom, tau

κh125WW
C2HDM = c2 sin(β − α)

What if the 125 GeV reveals different CP behaviour in two decay channels?

Thus, the SM-like Higgs couplings to the tops could be mainly CP-even while couplings 
to the bottoms and taus could be mainly CP-odd.

and c2 cannot be far from 1. But α2 is the CP-violating angle and therefore it should 
be small. However, the CP-odd component has an extra tanβ factor for down quarks 
and leptons, but not for the up quarks

YTypeII
C2HDM = c2Y

TypeII
2HDM − iγ5

s2

tβ
top

Fontes, Muhlleitner, Romão, RS, Silva, Wittbrodt, JHEP 1802 (2018) 073.



And this brings a very interesting CP-violation scenario

A Type II model 
where H2 is the SM-

like Higgs.  

Find two particles of the same mass one decaying 
to tops as CP-even

and the other decaying to taus as CP-odd

Probing one Yukawa coupling is not enough!  

h2 = H → tt̄

h2 = A → τ+τ−

YC2HDM = aF + iγ5bF

bU ≈ 0; aD ≈ 0



The LS and Flipped benchmark points

Almost CP-odd in the 
coupling to taus. Almost 

CP-even in the coupling to 
quarks.

The other scenarios are for maximal co * ce with 
all possible signs combination.

Same but with a CP-odd 
coupling to b quarks.

h1 = A → τ+τ−

h1 = H → t̄t

h1 = A → b̄b

h1 = H → t̄t



and

Type I

Type II

Type F

Type LS

Even if the CP-violating 
parameter is small, large 

tanβ can lead to large 
values of b.

No scalar component

Can be achieved

c1 = 0 ⇒ R11 = 0

a2
U =

c2
2

s2
β

; b2
U =

s2
2

t2
β

; C2 = s2
βc2

2

aU = aD = aL =
c2

sβ
bU = − bD = − bL = −

s2

tβ

aD = aL = 0

aD = 0

aL = 0

bD = bL = − s2tβ

bD = − s2tβ

bL = − s2tβ

ai + iγ5bi (i = U, D, L)



In Type II, if   

No scalar component

and the remaining h1 couplings to up-type quarks and gauge bosons are

This means that the h1 couplings to up-type quarks and to gauge 
bosons have to be very close to the SM Higgs ones.

ai + iγ5bi (i = U, D, L)

aD = aL ≈ 0 ⇒ bD = bL ≈ 1

a2
U = 1 − s4

2 = 1 −
1
t4
β

b2
U = s4

2 =
1
t4
β

ghVV
C2HDM

ghVV
SM

= C =
t2
β − 1
t2
β + 1

=
1 − s2

2

1 + s2
2



Direct probing at the LHC (ττh)

Numbers from: Berge, Bernreuther, Kirchner 
PRD92 (2015) 096012

Berge, Bernreuther, Ziethe PRL 100 (2008) 171605  
Berge, Bernreuther, Niepelt, Spiesberger, PRD84 (2011) 116003

• A measurement of the angle

can be performed 
with the accuracies

• It is not a direct measurement of the CP-violating angle α2.

pp → h → τ+τ−

tan Φτ =
bL

aL

ΔΦτ = 15o ⇐ 150 fb−1

tan Φτ = −
sin β

cos α1
tan α2 ⇒ tan α2 = −

cos α1

sin β
tan Φτ

ΔΦτ = 9o ⇐ 500 fb−1



!16

Direct probing at the LHC (tth)

Gunion, He, PRL77 (1996) 5172 
Boudjema, Godbole, Guadagnoli, Mohan, PRD92 (2015) 015019 
Amor dos Santos  eal PRD96 (2017) 013004 

Signal: tt fully leptonic and H -> bb

Background: most relevant is the 
irreducible tt background

pp → ht̄t
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Gunion, He, PRL77 (1996) 5172 
Amor dos Santos  eal PRD96 (2017) 013004 



Direct probing at the LHC

• For the C2HDM we need three independent measurements

tanφi =
bi
ai

;      i =U,D,L

• Just one measurement for type I (U = D = L), two for the other three types. 
At the moment there are studies for tth and ττh.

• If Φt ≠ Φτ type I and F (Y) are excluded. 

• To probe model F (Y) we need the bbh vertex. 



Decay CP eigenstates Model

None C2HDM, other CPV extensions

2 CP-odd; None C2HDM, NMSSM,3HDM...

3 CP-even; None C2HDM, cxSM, NMSSM,3HDM...

CP violation - direct

Combinations of three decays

CNMSSM – King, Mühlleitner, Nevzorov, Walz; NPB901 (2015) 526-555

C2HDM – Fontes, Romão, RS, Silva, PRD92 (2015) 5, 055014

h1 → ZZ( + )h2 → ZZ( + )h2 → h1Z

h1 → ZZ ⇐ CP(h1) = 1 h3 → h2h1 ⇒ CP(h3) = CP(h2)

h3 → h2Z CP(h3) = − CP(h2)

h2(3) → h1Z CP(h2(3)) = − 1

h2 → ZZ CP(h2) = 1

Many other combinations



The 3 decays vs. variables - the CP-violating angle

There is no correlation between the high rates of CP-violating decays and 
the CP-violating phase.  

More yellow 
means larger 
CP-violating 

phase

h125 → ZZ measured

Fontes, Muhlleitner, Romão, RS, Silva, Wittbrodt, JHEP 1802 (2018) 073.



Other cool variables

• Variable involving Higgs couplings to gauge bosons

• Variables involving Higgs Yukawa couplings (for a Type II model)

which are normalized to be between 0 and 1. Variables for the sum can also be 
defined but they are useless.
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Results for Type II (where some 
correlation seems to exist)

But in most cases there is no correlation.  



But what if the three scalars are invisible?

Two doublets + one singlet and one exact Z2 symmetry

with the most general renormalizable potential 

V = m2
11 |Φ1 |2 + m 2

22 |Φ2 |2 +(AΦ†
1Φ2ΦS + h . c.)

+
λ1

2
(Φ†

1Φ1)2 +
λ2

2
(Φ†

2Φ2)2 + λ3(Φ†
1Φ1)(Φ†

2Φ2) + λ4(Φ†
1Φ2)(Φ†

2Φ1)

+
λ5

2 [(Φ†
1Φ2) + h . c . ] +

m2
S

2
Φ2

S +
λ6

4
Φ4

S + +
λ7

2
(Φ†

1Φ1)Φ2
S +

λ8

2
(Φ†

2Φ2)Φ2
S

Φ1 =
G+

1

2
(v + h + iG0) Φ2 =

H+

1

2
(ρ + iη) ΦS = ρS

and the vacuum preserves the symmetry 

The potential is invariant under the CP-symmetry

Φ1 → Φ1, Φ2 → − Φ2, ΦS → − ΦS

ΦCP
1 (t, ⃗r ) = Φ*1 (t, − ⃗r ), ΦCP

2 (t, ⃗r ) = Φ*2 (t, − ⃗r ), ΦCP
S (t, ⃗r ) = ΦS(t, − ⃗r )

except for the term (AΦ†
1Φ2ΦS + h . c.) for complex A

Azevedo, Ferreira, Muehlleitner, Patel, RS, Wittbrodt, JHEP 1811 (2018) 091



Dark CP-violating sector

The Z2 symmetry is exact - all particles are dark except the SM-like Higgs. The couplings 
of the SM-like Higgs to all fermions and massive gauge bosons are exactly the SM ones.  

The model is Type I - only the first doublet couples to all fermions  

The neutral mass eigenstates are 

h1

h2

h3

= R (
ρ
η
ρS)

h1, h2, h3

R =
c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3

But now how do we see signs of CP-violation? 

Missing energy signals are similar to some extent for all dark matter models. They need 
to be combined with a clear sign of CP-violation.

qq̄(e+e−) → Z* → h1h2 → h1h1Z

qq̄(e+e−) → Z* → h1h2 → h1h1h125

Mono-Z and mono-Higgs events.



8

Z1

Z2

Z3

hi

hj

hk

ei

ej

ek

mi

mj
mk

p1, µ

p2,↵

p3,�

FIG. 3: Feynman diagram contributing to the CP violating form factor fZ
4 .

regardless of the CP-nature of the particles involved. Therefore, these are not good processes to probe CP-violation
in the dark sector.

However, though CPV occurs in the dark sector of the theory, it can have an observable impact on the phenomenol-
ogy of the SM particles. A sign of CPV in the model – possibly the only type of signs of CPV which might be
observable – can be gleaned from the interesting work of Ref. [34] (see also Ref. [35]), wherein 2HDM contributions to
the triple gauge boson vertices ZZZ and ZW

+
W

� were considered. A Lorentz structure analysis of the ZZZ vertex,
for instance [55–58], reveals that there are 14 distinct structures, which can be reduced to just two form factors on
the assumption of two on-shell Z bosons and massless fermions, the o↵-shell Z being produced by e

+
e
� collisions.

Under these simplifying assumptions, the ZZZ vertex function becomes (e being the unit electric charge)

e�↵�µ

ZZZ
= i e

p
2
1 �m

2
Z

m
2
Z

h
f
Z

4

⇣
p
↵

1 g
µ� + p

�

1g
µ↵

⌘
+ f

Z

5 ✏
µ↵�⇢ (p2 � p3)⇢

i
, (16)

where p1 is the 4-momentum of the o↵-shell Z boson, p2 and p3 those of the remaining (on-shell) Z bosons. The
dimensionless fZ

4 form factor is CP violating, but the fZ

5 coe�cient preserves CP. In our model there is only one-loop
diagram contributing to this form factor, shown in Fig. 3. As can be inferred from the diagram there are three
di↵erent neutral scalars circulating in the loop – in fact, the authors of Ref. [34] showed that in the 2HDM with
explicit CPV (the C2HDM) the existence of at least three neutral scalars with di↵erent CP quantum numbers that
mix among themselves is a necessary condition for non-zero values for fZ

4 . Notice that in the C2HDM there are three
diagrams contributing to f

Z

4 – other than the diagram shown in Fig. 3, the C2HDM calculation involves an additional
diagram with an internal Z boson line in the loop, and another, with a neutral Goldstone boson G

0 line in the loop.
In our model, however, the discrete Z2 symmetry we imposed forbids the vertices ZZhj and ZG

0
hi (these vertices do

occur in the C2HDM, being allowed by that model’s symmetries), and therefore those two additional diagrams are
identically zero. In [34] an expression for f

Z

4 in the C2HDM was found, which can easily be adapted to our model,
by only keeping the contributions corresponding to the diagram of Fig. 3. This results in

f
Z

4 (p21) = � 2↵

⇡s
3
2✓W

m
2
Z

p
2
1 �m

2
Z

f123

X

i,j,k

✏ijk C001(p
2
1,m

2
Z
,m

2
Z
,m

2
i
,m

2
j
,m

2
k
) , (17)

where ↵ is the electromagnetic coupling constant and the LoopTools [59] function C001 is used. The f123 factor
denotes the product of the couplings from three di↵erent vertices, given in Ref. [34] by

f123 =
e1e2e3

v3
, (18)

where the ei,j,k (i, j, k = 1, 2, 3) factors, shown in Fig. 3, are related to the coupling coe�cients that appear in the
vertices Zhihj (in the C2HDM they also concern the ZG

0
hi and ZZhi vertices, cf. [35]). With the conventions of the

current paper, we can extract these couplings from Eq. (15) and it is easy to show that

f123 = (R12R21 �R11R22) (R13R31 �R11R33) (R23R32 �R22R33)

= R13R23R33 , (19)

where the simplification that led to the last line originates from the orthogonality of the R matrix. We observe that
the maximum value that f123 can assume is (1/

p
3)3, corresponding to the maximum mixing of the three neutral

components, ⇢, ⌘ and �S ⌘ s. This is quite di↵erent from what one expects to happen in the C2HDM, for instance –
there one of the mixed neutral states is the observed 125 GeV scalar, and its properties are necessarily very SM-like,

iΓμαβ = − e
p2

1 − m2
Z

m2
Z

fZ
4 (gμα p2,β + gμβ p3,α) + . . .

With one Z off-shell the most general ZZZ vertex has a CP-odd term of the form

that comes from an effective operator (dim-6)

k̃ZZ

m2
Z

∂μZν∂μZρ∂ρZν

in our model it has the simple expression

f123 = R13R23R33

Combining h1h2Z; h1h3Z and h2h3Z

Gaemers, Gounaris, ZPC1 (1979) 259 

Hagiwara, Peccei, Zeppenfeld, Hikasa, 
NPB282 (1987) 253  

Grzadkowski, Ogreid, Osland, JHEP 05 (2016) 
025
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Im(fZ
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FIG. 4: The CP-violating fZ
4 (p21) form factor, normalized to f123, for mh1 = 80.5 GeV, mh2 = 162.9 GeV and mh3 = 256.9

GeV, as a function of the squared o↵-shell Z boson 4-momentum p21, normalized to m2
Z .

which implies that the 3⇥ 3 matrix R should approximately have the form of one diagonal element with value close
to 1, the corresponding row and column with elements very small and a 2⇥ 2 matrix mixing the other eigenstates4.
Within our model, however, the three neutral dark fields can mix as much or as little as possible.

In Fig. 4 we show, for a random combination of dark scalar masses (mh1 ' 80.5 GeV, mh2 ' 162.9 GeV and
mh3 ' 256.9 GeV) the evolution of fZ

4 normalized to f123
5 with p

2
1, the 4-momentum of the o↵-shell Z boson. This

can be compared with Fig. 2 of Ref. [34], where we see similar (if a bit larger) magnitudes for the real and imaginary
parts of f

Z

4 , despite the di↵erences in masses for the three neutral scalars in both situations (in that figure, the
masses taken for h1 and h3 were, respectively, 125 and 400 GeV, and several values for the h2 mass were considered).
As can be inferred from Fig. 4, f

Z

4 is at most of the order of ⇠ 10�5. For the parameter scan described in the
previous section, we obtain, for the imaginary part of fZ

4 , the values shown in Fig. 5. We considered two values of
p
2
1 (corresponding to two possible collision energies for a future linear collider). The imaginary part of fZ

4 (which,
as we will see, contributes directly to CP-violating observables such as asymmetries) is presented as a function of
the overall coupling f123 defined in Eq. (19). We in fact present results as a function of f123/(1/

p
3)3, to illustrate

that indeed the model perfectly allows maximum mixing between the neutral, dark scalars. Fig. 5 shows that the
maximum values for |Im(fZ

4 )| are reached for the maximum mixing scenarios. We also highlight in red the points
for which the dark neutral scalars hi have masses smaller than 200 GeV. The loop functions in the definition of fZ

4 ,
Eq. (17), have a complicated dependence on masses (and external momentum p1) so that an analytical demonstration
is not possible, but the plots of Fig. 5 strongly imply that choosing all dark scalar masses small yields smaller values
for |Im(fZ

4 )|. Larger masses, and larger mass splittings, seem to be required for larger |Im(fZ

4 )|. A reduction on the
maximum values of |Im(fZ

4 )| (and |Re(fZ

4 )|) with increasing external momentum is observed (though that variation is
not linear, as can be appreciated from Fig. 4). A reduction of the maximum values of |Im(fZ

4 )| (and |Re(fZ

4 )|) when
the external momentum tends to infinity is also observed.

The smaller values for |Im(fZ

4 )| for the red points can be understood in analogy with the 2HDM. The authors of
Ref. [34] argue that the occurrence of CPV in the model implies a non-zero value for the basis-invariant quantities
introduced in Refs. [60, 61], in particular for the imaginary part of the J2 quantity introduced therein. Since Im(J2)
is proportional to the product of the di↵erences in mass squared of all neutral scalars, having all those scalars with
lower masses and lower mass splittings reduces Im(J2) and therefore the amount of CPV in the model. Now, in our
model the CPV basis invariants will certainly be di↵erent from those of the 2HDM, but we can adapt the argument to

4
Meaning, a neutral scalar mixing very similar to the CP-conserving 2HDM, where h and H mix via a 2⇥ 2 matrix but A does not mix

with the CP-even states.
5
For this specific parameter space point, we have f123 ' �0.1835.

The form factor f4 normalised to f123 for 
m1=80.5 GeV,  m2=162.9 GeV and m3=256.9 GeV 
as a function of the squared off-shell Z-boson 
4-momentum, normalised to mZ2.

But the bounds we have from present measurements by ATLAS and CMS, show that 
we are still two orders of magnitude away from what is needed. 

−1.2 × 10−3 < fZ
4 < 1.0 × 10−3

−1.5 × 10−3 < fZ
4 < 1.5 × 10−3

CMS collaboration, EPJC78 (2018) 165.

ATLAS collaboration, PRD97 (2018) 032005.6

FIG. 1: Ratio of the branching ratio of h into two photons to the SM value versus the value of the charged scalar mass for all
the allowed points in the model.

FIG. 2: Points that survive all experimental and theoretical constraints. Left: relic density abundance versus dark matter
mass where the grey line represents the measured DM relic abundance; points either saturate the relic abundance constraints
within +1� and -5� around the central value (pink points) or are below the measured central value (violet points). Right: spin-
independent nucleon dark matter scattering cross section as a function of the dark matter mass where the grey line represents
the latest XENON1T [46, 54] results; colour code is the same and pink points are superimposed on violet points.

the parameter scan was made taking into account all data from dark matter searches, we are comfortable that all
phenomenology in that sector is satisfied by the dark particles.

Let us now study how the model behaves in terms of dark matter variables. Several experimental results put
constraints on the mass of the dark matter (DM) candidate, and on its couplings to SM particles. The most strin-
gent bound comes from the measurement of the cosmological DM relic abundance from the latest results from the
Planck Collaboration [45], (⌦h2)obsDM = 0.120 ± 0.001. The DM relic abundance for our model was calculated with
MicrOMEGAs [44]. In our scan we accepted all points that do not exceed the value measured by Planck by more than
1�. This way, we consider not only the points that are in agreement with the DM relic abundance experimental values
but also the points that are underabundant and would need further dark matter candidates to saturate the measured

Finally: there are also charged particles that that can only 
decay to to another Z2-odd particle. They also contribute to 
the decay of the SM-like Higgs into photons. But again no 
deviation was found so far.

How far can we go in constraining f4?



Conclusions

• Distributions in h to ZZ (WW) to 4 leptons useful at loop-level

• Measurement of f4 useful for “invisible” CP-violation (but also to visible as for 
instance in the C2HDM)

• Direct - top in the production 

• Direct - b in the production? 
or will we see a 4b final state at the HL-LHC?

• Direct - taus in the decays 

• Ideas? 



The end
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The alignment limit in the 2HDM
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Even if in the end we will have a line only, the mixing 
between vevs can only be seen with new physics. 

Two examples:

What about tanβ? All couplings of h125 with the 
other SM particles are SM-like (even hhh).

Haller, Hoecker, Kogler, 
Peiffer, Stelzer 1803.01853

From	B-physics:	Charged	Higgs	loops	–	
constraint	in	the	charged	Higgs	mass,	tanβ	

planeATLAS, JHEP01(2018)055

From	the	LHC:	
limit	on	the	
pseudoscalar	
mass,	tanβ		

plane.
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Boudjema, Godbole, Guadagnoli, Mohan 2015

Review of tth

Azimuthal difference between l+ in the t rest frame and l- in the tbar rest frame
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Review of tth
Amor dos Santos  eal 2015

Combinatorial background plays a very 
important role.
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ATLAS, 1506.05669  

Having all extra couplings compatible with zero 
does not mean CP-conservation. 

CP - what have ATLAS and CMS measured so far?

• Effective Lagrangian (CMS notation)

CMS, 1707.00541



!33

Berge, Bernreuther, Kirchner PRD92 (2015) 096012


