New searches for charged lepton flavor violation with the ATLAS detector

erc

Carlo A. Gottardo Universität Bonn

27 November 2018 Experimental seminar

Outline

- Charged lepton flavour violation (cLFV), what is it?
- Experimental searches
 - Higgs boson
 - Heavy resonances
 - Top-quark
- Conclusions

cLFV, how it looks like

Why are we interested in this? Isn't all this forbidden?

$$= \frac{3\alpha}{32\pi} \left| \sum_{\substack{B \le Q, \Im \ e_{Y}) = \frac{3\alpha}{32\pi}} \underbrace{\sum_{\substack{b \le Q, \Im \ e_{Y}) = \frac{3\alpha}{32\pi}} \underbrace{\sum_{i=2,3}^{\text{cLFV}} \underbrace{\sum_{i=2,3}^{\text{formulation}} \underbrace{\sum_{i=2,3}^{\text{cLFV}} \underbrace{\sum_{i=2,3}^{\text{formulation}} \underbrace{\sum_{i=2,3}^{\text{cLFV}} \underbrace{\sum_{i=2,3}^{\text{formulation}} \underbrace{\sum_{i=2,3}^{\text{cLFV}} \underbrace{\sum_{i=2,3}^{\text{formulation}} \underbrace{\sum_{i=2,3}^{\text{cLFV}} \underbrace{\sum_{i=2,3}^{\text{formulation}} \underbrace{\sum_{i=2,3}^{\text{cLFV}} \underbrace{\sum_{i=2,3}^{\text{formulation}} \underbrace{\sum_{i=2,3}^{\text{cV} \underbrace{\sum_{i=2$$

Observation of cLFV = probe for New Physics beyond simplest SM extension

Beyond the SM

Is this the full story?

2HDM,

SUSY,

Z', RS, ...

- $m_{\nu} < 0.1 \text{ eV} \rightarrow Y_{\nu} < 5 \times 10^{-13}$ $\Delta \mathcal{L}_Y = -(Y_{\nu})_{ij} L_i \phi^c \nu_{Rj}$
- Majorana mass term?
- See-saw? Heavy neutrino?
- ... and many BSM models

 $\Delta \mathcal{L}_M \propto M \bar{\nu}_B^c \nu_R$

- 1. Observation of cLFV = probe for New Physics
- 2. cLFV rates depend on the unknown mechanism underlying v masses.

Previous searches

Reaction	Present limit	C.L.	Experiment	Year	
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016	-
$\mu^+ \to e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988	
$\mu^{-}\mathrm{Ti} \rightarrow e^{-}\mathrm{Ti}^{(\mathrm{a})}$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998	
$\mu^{-}\mathrm{Pb} \rightarrow e^{-}\mathrm{Pb}^{(\mathrm{a})}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996	
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}^{(\mathrm{a})}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006	
$\mu^{-}\mathrm{Ti} \rightarrow e^{+}\mathrm{Ca}^{*}$ ^(a)	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998	1709.00294

Previous searches

90% CL upper limits on τ LFV decays

[C. A. Gottardo | Searches for cLFV with ATLAS | SLAC experimental seminar | 27 Nov. 2018]

Previous searches

UNIVERSITÄT BONN

Reaction	Present limit	C.L.	Experiment	Year
$\pi^0 \to \mu e$	$< 3.6 \times 10^{-10}$	90%	KTeV	2008
$K_L^0 \to \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998
$K_L^0 \to \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008
$K^+ \to \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL E865	2005
$J/\psi ightarrow \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013
$J/\psi ightarrow au e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004
$J/\psi ightarrow au \mu$	$< 2.0 \times 10^{-6}$	90%	BESII	2004
$B^0 \to \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013
$B^0 \to \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008
$B^0 o au\mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008
$3 \to K \mu e^{(\mathrm{b})}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006
$B \to K^* \mu e^{(\mathrm{b})}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006
$B^+ \to K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012
$B^+ \to K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012
$B_s^0 \to \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013
$f(1s) \to \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008
$Z \to \mu e$	$< 7.5 \times 10^{-7}$	95%	LHC ATLAS	2014
$Z \rightarrow \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995
$\tau \to \tau \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997
•				

Higgs and top-quark sectors explored only at the LHC

erc

The ATLAS detector

UNIVERSITÄT BONN

High mass resonances (Nov. '18, Vs = 13 TeV, L=36 fb-1) ^{1807.06573}

X → *e*μ, *e*τ, μτ X = Z', QBH, $\tilde{\nu}_{\tau}$ up to 6 TeV

Top quark decays (Sept. '18, Vs = 13 TeV, L=80 fb⁻¹) 1809.09048</sup>

 $t \rightarrow \ell \ell' q$

$H \rightarrow \ell \tau^{had} \ (\ell = e, \mu)$

Two analyses, same strategy.

Selection:

```
= 1\ell, 1\tau^{had}, OS
p<sub>T</sub>\ell > 26 GeV, p<sub>T</sub>\tau ≥ 45 GeV
|\eta(\ell) - \eta(\tau)| < 2
0 b-jets
```

Backgrounds:

 $Z \rightarrow \tau \tau$ W+jets with fake τ multijet (fake τ , non-prompt μ) $t\bar{t}$, VV, single top, $H \rightarrow \tau \tau$

$H \rightarrow \ell \tau^{had} \ (\ell = e, \mu)$

UNIVERSITÄT BONN

Background modeling

Results

μτ^{had} Best fit Br = 0.77 ± 0.62 % Exp. lim 1.24^{+0.50} -0.35 % **Obs lim Br < 1.85** %

$e au^{had}$

Best fit Br = -0.47 ± 1.13 % Exp lim 2.07 ^{+0.82} _{-0.58} **Obs lim Br < 1.81** %

Selection:

= 1e, 1 μ , OS $p_T^{(\text{leading})} > 35 \text{ GeV}, p_T^{(\text{trailing})} \ge 12 \text{ GeV}$ o *b*-jets, τ^{had} veto

_	N_{Jets}	$\Delta \Phi(\ell_2, E_T^{miss})$	$\Delta \Phi(\ell_1, \ell_2)$	$\Delta \Phi(\ell_1, E_T^{miss})$	$\Delta p_T(\ell_1, \ell_2)$
SR _{no} J	0	≤ 0.7	≥ 2.3	≥ 2.5	≥ 7 GeV
SR _{Jets}	≥ 1	≤ 0.5	≥ 1.0	≥ 1.0	≥ 1 GeV

Data-driven background estimation:

- SM bkg symmetric under *e*<—>μ exchange
- $H \rightarrow \mu \tau \rightarrow \mu e (\nu \nu)$ breaks this symmetry, $p_T^{\mu} > p_T^{e}$
- split regions in $\mu e (p_T^{\mu} > p_T^e)$ and $e \mu (p_T^{\mu} < p_T^e)$
- \bullet extract $\mu_fitting$ the discriminant using

$$L(b_i, \mu) = \prod_{i}^{N_{\text{bins}}} \operatorname{Pois}(n_i \mid b_i) \times \operatorname{Pois}(m_i \mid b_i + \mu s_i)$$

- Correct for
 - Mis-reconstructed objects (fakes)
 - different efficiencies in μe vs $e\mu$
- for $H \rightarrow e\tau^{\text{lep}}$ swap e, μ and repeat

$H \rightarrow \ell \tau^{lep}$

UNIVERSITÄT BONN

Discriminant

$$m_{\rm coll} = \sqrt{2p_{\rm T}^{\ell_1}(p_{\rm T}^{\ell_2} + E_{\rm T}^{\rm miss})(\cosh \Delta \eta - \cos \Delta \phi)}$$

Results

μτ^{lep} Best fit Br = 0.03 ± 0.87 Exp lim 1.73^{+0.74} -0.49 %

Obs lim 1.79 %

eτ^{lep}

Best fit Br = -0.26 ± 0.81 Exp lim 1.48 ^{+0.60} _{-0.42} % **Obs lim 1.36** %

150

200

250

300

350

m_{coll} [GeV]

400 450

$H \rightarrow \ell \tau$ combination

UNIVERSITÄT BONN

erc

$Br(H \rightarrow e\tau) < 1.04 \%$

Br(H→μτ) < 1.43 %

UNIVERSITÄT BONN

Three BSM models:

- Z' (same quark couplings as Z, one cLFV mode at a time)
- τ sneutrino coupled to 1st gen. quarks (RPV SUSY)
- Quantum black holes (QBH)

High-mass resonances

95% credibility level upper limits on cross sections

Stronger bounds on τ final states than those from low energy experiments

cLFV in top-quark decays

the top could decay to a jet $+e\bar{\mu}$ with a branching ratio of order 10^{-3} . We estimate that the currently available LHC data (20 fb⁻¹ at 8 TeV) could be sensitive to $BR(t \rightarrow e\bar{\mu} + \text{jet}) \sim 6 \times 10^{-5}$...

> Davidson et al., Eur. Phys. J. C75 (2015) no. 9, 450

"

"

The dominant tree-level effects of LQ's to the rare LFV top decays $t \to \ell_i^+ \ell_j^- u_k$ can be summarized as ... Currently no dedicated searches exist for such signatures, ... "

Doršner et al., Phys. Rept. 641 (2016) 1-68

cLFV in top-quark decays

ATLAS CONF Note

ATLAS-CONF-2018-044

13th September 2018

Search for charged lepton-flavour violation in top-quark decays at the LHC with the ATLAS detector

https://cds.cern.ch/record/2638305/

Search for $t \rightarrow \ell \ell' q$

- $t \rightarrow \ell \ell' q$ mediated by BSM particle
- No unexpected particle observed at the LHC
- Heavy new physics can be probed indirectly
- Remember the weak theory without the W boson:

Model independent

Signal process

$$\mathcal{L} = \mathcal{L}_{SM}^{(4)} + \frac{1}{\Lambda^2} \sum_k C_k^{(6)} \mathcal{O}_k^{(6)}$$
$$\mathcal{O}_{LL}^{AV} = (\bar{e}_i \gamma^{\alpha} P_L e_j) (\bar{u}_q \gamma_{\alpha} P_L t)$$
$$\mathcal{O}_L^{S+P} = (\bar{e}_i P_L e_j) (\bar{u}_q P_L t)$$
$$\mathcal{O}_L^{LQ} = (\bar{u}_q P_L e_j) (\bar{e}_i P_L t)$$

Signal process: $pp \rightarrow t\bar{t} \rightarrow (\ell \ell' q) (W(\ell \nu)) \text{ with } \ell = e, \mu, \tau$ $Br(t \rightarrow e\mu q) \leq 3.7 \times 10^{-3}$

Final state probed: = 3ℓ with $\ell = (e, \mu)$, ≥ 2 jets, 1 b-jet, E_T^{miss}

How to generate events:

- FeynRules
- Madgraph5_aMC@NLO
- Pythia8 + EvtGen
- Geant4

Regions definition

Event selection

=3 light leptons,
Z-veto (20 GeV wide), m_{ℓℓOS} > 15 GeV
≥ 2 jets, ≤1 b-jet,
∑ lep. charges = ± 1.

tťX = tťZ, tťW, tťH

stat. only unc.

Major non-prompt lepton background in all regions.

[C. A. Gottardo | Searches for cLFV with ATLAS | SLAC experimental seminar | 27 Nov. 2018]

Non prompt lepton background

UNIVERSITÄT BONN

Non-prompt lepton origin:

- hadron decays (mostly c- and b-hadrons)
- γ-conversion in the detector material

Background suppression?

- by isolation requirements at track or calorimeter level
- ... but "tight isolation" already applied

Modelling

- background dependent on details of particles' interaction
- MC simulation not completely reliable
- data driven estimate preferable

The matrix method

UNIVERSITÄT BONN

How?

$$\begin{pmatrix} N_{TT} \\ N_{T\bar{T}} \\ N_{\bar{T}\bar{T}} \\ N_{\bar{T}\bar{T}} \end{pmatrix} = \begin{pmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{pmatrix} \begin{pmatrix} N_{RF}^{TT}/rr \\ N_{RF}^{TT}/rf \\ N_{FR}^{TT}/fr \\ N_{FF}^{TT}/ff \end{pmatrix}$$

Number of events with 1 tight leptons and 1 not-tight

r (f) = matrix method efficiencies,
probability of a loose prompt (n.p.) lepton of being tight

Number of events with 2 tight leptons, one **prompt** one **n.p.**

Inverting the matrix: $N_F = N_{RF} + N_{FR} + N_{FF}$ Inverting the matrix for each event \rightarrow event weight

The MM efficiencies

- 2l regions, tag&probe probe = trailing lepton
- Opposite-Sign, "prompt enriched"

 $r = \frac{N_T}{N_L}$

Same-Sign, "n.p. enriched"

Electron charge flip (CF) **cont.** via reweighing of OS events

The charge flip rates

Electron η

• Z-boson peak in SS and OS di-electron invariant mass

• Fit charge flip rates ϵ

$$L = \prod_{ij} \frac{\left((\epsilon_i + \epsilon_j)N_{ij}\right)^{N_{ij}^{ss}}}{N_{ij}^{ss}} e^{(\epsilon_i + \epsilon_j)N_{ij}}$$

Charge Flip Rate (nominal electrons) 10 2.5 6.02.30 9.10.65 2.64 0.08 1.60,00 A.50.18 1.3⁹0.09 0.920.04 2.70.21 1.5 0.320.02 0.50.04 1.0.0 0,05,00 0.230.02 0.52 0.05 0.12.01 10⁻¹ 0.5 0.001 0.28,03 0.00,00 10^{-2} 0 200 20 40 60 80 100 120 140 160 180 Electron $p_{_{T}}$ [GeV]

The matrix method application

Complication:

events are selected by trigger requiring isolation cannot ask for three loose leptons!

Solution:

- consider only the 2nd and 3rd leading leptons
- ... assumed not to be matched to a trigger requiring isolation (true in 88% of tt in SR)

That's why matrix for 2ℓ only is shown, although there are 3 leptons!

$$\begin{pmatrix} N_{TT} \\ N_{T\bar{T}} \\ N_{\bar{T}T} \\ N_{\bar{T}T} \end{pmatrix} = \begin{pmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{pmatrix} \begin{pmatrix} N_{RR}^{TT}/rr \\ N_{RF}^{TT}/rf \\ N_{FR}^{TT}/fr \\ N_{FF}^{TT}/ff \end{pmatrix}$$

Modelling

UNIVERSITÄT BONN

All syst. included Br(t $\rightarrow \ell \ell' q$) = 3 × 10⁻⁴

[C. A. Gottardo | Searches for cLFV with ATLAS | SLAC experimental seminar | 27 Nov. 2018]

Kinematic reconstruction

- the jet with highest b-tagging probability assigned to SM top
- cLFV top = OSDF lepton pair + jet with min($\sqrt{s} m_t$)
- SM top = reserved jet + remaining lepton + neutrino

Stat. + 10% syst on Non-prompt Br($t \rightarrow \ell \ell' q$) = 3 × 10⁻⁴

MVA discriminant

Non-prompt

Uncertainty

ZZ

120

ZZ

140

m_{II}(OSSF) [GeV]

Non-prompt

Uncertainty

BDT trained on MC 1000 trees, tree depth 3

13 input variables

Variable	Separation (%)
OSSF lepton pair invariant mass	11
cLFV top mass	10
$p_{\rm T}$ of the electron associated to the cLFV decay	9.1
$p_{\rm T}$ of the muon associated to the cLFV decay	8.5
$p_{\rm T}$ of the lepton associated to the SM decay	8.3
Scalar mass of all jets and leptons in the event	7.6
Same-sign electron pair invariant mass	6.9
Missing transverse momentum	6.8
Number of <i>b</i> -jets	6.7
W transverse mass associated to the SM top lepton	6.6
ΔR between the cLFV electron and the cLFV light jet	6.5
SM top mass	6.4
ΔR between the cLFV muon and the cLFV light jet	6.3
BDT discriminant	44

All syst. included, $Br(t \rightarrow \ell \ell' q) = 3 \times 10^{-4}$

180

200

140 160

cLFV muon p_ [GeV]

Systematics

• Non-prompt background:

	Δnorm	components
non-closure	10 %	Ν
stat. unc. efficiencies	8.1 %	S+N
trigger matching assumption	6.5 %	S+N
stat. uncertainty	1.3 %	S+N
variation of 2l-SS regions	3.2 %	S+N
prompt containation in 2 <i>l</i> -SS	2.6 %	S+N
efficiencies parametrisation	1 %	S+N
charge flip contamination	0.3 %	S+N
Total	15 %	

- Prompt background (MC)
 - cross section uncertainty,
 - μ_R , μ_F variations (~15% for WZ, ZZ),
 - VV modelling (35% WZ, 33% ZZ),
 - instrumental (2.2% variation of total background).
- Signal sample uncertainties
 - PDF + scale variations acceptance (±4.3%),
 - instrumental

Upper limits

per limit for t
$$\rightarrow \ell \ell' q$$
:
 $\mathcal{B}(t \rightarrow \ell \ell' q) < 1.36^{+0.61}_{-0.37} \times 10^{-5}$ (expected).
 $\mathcal{B}(t \rightarrow \ell \ell' q) < 1.86 \times 10^{-5}$ (observed).

Upper limit for $t \rightarrow e \mu q$ (τ -veto in cLFV vertex):

$$\begin{aligned} \mathcal{B}(t \to e \mu q) < 4.8^{+2.1}_{-1.4} \times 10^{-6} \quad (\text{expected}). \\ \mathcal{B}(t \to e \mu q) < 6.6 \times 10^{-6} \quad (\text{observed}). \end{aligned}$$

... to be compared to the indirect limit: Br $(t \rightarrow e \mu q) < 3.7 \times 10^{-3}$.

- Four cLFV searches by ATLAS:
 - H→μτ
 - H→eτ
 - Heavy resonances
 - first direct search in the top sector
- Background estimation technique

... and now?

Conclusions - the big picture

Open questions:

- Nothing up to the Planck scale?
- Chasing models still worth?
- Where to look?

Some facts:

- BSM physics exists
- 140 fb⁻¹ data sitting there
- "Nothing beats data" (T. Plehn, TOP2018)

Strategy:

• •

- Constrain EFT operators to bound heavy BSM physics
- Precision measurements for weakly coupled BSM physics

BACKUP

[C. A. Gottardo | Searches for cLFV with ATLAS | SLAC experimental seminar | 27 Nov. 2018]

Η→μτ

UNIVERSITÄT BONN

 2.2σ local significance

CMS results

- **CMS** √s = 8 TeV, 19.7 fb⁻¹
- Br(h→ μτ) < 1.51%
 Expected 0.75 ± 0.38%
 Significance +2.4σ

1502.07400

ATLAS $\sqrt{s} = 8$ TeV, 20 fb⁻¹

- Br($H \rightarrow \mu \tau$) < 1.43 %
- Br(H→eτ) < 1.04 %</p>

CMS $\sqrt{s} = 13$ TeV, 35.9 fb⁻¹, BDT for $\mu\tau$ **b** Br(h $\rightarrow \mu\tau$) < 0.25% (0.25%) **b** Br(h $\rightarrow e\tau$) < 0.61% (0.37%) 1712.07173 $H \rightarrow \ell \tau^{lep}$

$$L(\mu, b_{ij}, n_{ij}^{\text{np}}, m_{ij}^{\text{np}}) = \prod_{i}^{N_{m_{\text{coll}}}} \prod_{j}^{N_{p_{\text{T}}^{\ell_2}}} \text{Pois}(n_{ij} \mid A_j b_{ij} + n_{ij}^{\text{np}})$$
$$\times \text{Pois}(m_{ij} \mid b_{ij} + m_{ij}^{\text{np}} + \mu s_{ij})$$
$$\times \text{Gaus}(n_{ij}^{\text{np}} \mid N_{ij}^{\text{np}}, \sigma_{N_{ij}^{\text{np}}})$$
$$\times \text{Gaus}(m_{ij}^{\text{np}} \mid M_{ij}^{\text{np}}, \sigma_{M_{ij}^{\text{np}}}).$$

Signal reconstruction and discrimination

UNIVERSITÄT BONN

erc

- The four most discriminating variables are shown.
- Not all syst. included!
- The signal is normalised to Br(t→ℓℓ'q) = 3×10-4

B-only fit

Quantum black hole

0912.0826

• QBH forms if partons satisfy the hoop conjecture

$$r \lesssim R_{\rm H} \equiv 2\,\ell_{\rm p}\,rac{E}{m_{
m p}}$$
 $m_{
m p},\ell_{
m p}$ = Planck mass and length E = total energy in center-of-mass frame 1311.5698 r = system radius

- Color, charge, angular momentum conserved
- Small number of final state particles (=2 most probable)
- Gravity coupling equally to all quarks, leptons and gauge bosons (?)

Il datasets. The $B \rightarrow D^* \tau \bar{\nu}$ decay, mode been considered plausible, since the flavor constraints are erc erved recently by LHCb [4]. These measure-D weaker on four-fermion operators mediating such transitions. (Prior studies of $B \to X_s \nu \bar{\nu}$ [17] and $\bar{B}_{(s)}$ onsistent with each other and with earlier , and together show a significant deviation $\tau - \tau \overline{\eta}(5X)$ [18, 19] decays were motivated by this con sideration.) - However, PE 109,10 (2012) is mediated by the rd block (f) predictions for the combina-Dee-level $b \rightarrow c$ transition.²¹ It 48 suppressed in the SM Deither by CKM langles (compared to other B M Predictions) atios $\mathcal{R}(\underline{\mathcal{R}}) = \frac{\underline{\mathcal{B}}(\underline{B} \Rightarrow \underline{\mathcal{R}}_{\tau})}{\overline{\mathcal{B}}(\overline{B} \Rightarrow \underline{\mathcal{R}}(\underline{\ell}))}, \quad X = D, D^*$ 0.5 t phase space sup (2015) R(D*) Bar, PRL109,101802(2012) $\Delta \chi^2 = 1.0$ 299(11) FNAL/MILC (2015) elle, PRD92,072014(2015) against the just all (2012)0.45 HCb, PRL115,111803(2015) $\mathcal{B}(B \to D^* \tau \nu_{\tau})$ Belle, arXiv:1603.06711 ew-physics at low HFAG Average, $P(\chi^2) = 67\%$ $\mu \mathcal{R}(\mathbf{D}^{*}) = measuremen$ are´consistent wi 0.4 SM prediction cesses suppressed lity $[\mathcal{H}_{e}, 8]$. = $\mathcal{H}_{e} \mathcal{H}_{b} \mathcal{H}_{b}$) & velata, $\tau_L^{\text{their}} \nu_{\alpha}^{\text{aye}}$ 0.35 the SM expect $\sqrt{2}$ ons [10-12] are summariz flavor structure f theirements is Gai 0.3 central values of e de s<u>Gnore than 4</u> le I. To do so, a 0.25 $ilepton invaria^2$ istri HFAG R(D), PRD92,054510(2015) nic $b \rightarrow c$ decay R(D*), PRD85,094025(2012) D/D' and Belle [2, 0.2∟ 0.2 alsc B HFLAV 0.6 cale must be nea 0.3 0.4 0.5 accommonated by any model that modif 1 consistency with $P(\chi^2) = 67.4\%$ R(D)the future, Belle II is expected to reduce At the I HC and other l uncertainties of $R(D^{(*)})$ by factors of ~ 5 0.6 precision electroweak data from LEP.4 When NP cou-, thereby driving experimental and theory R(D)plings to other generations are present, constraints from comparable levels. flavor physics, such as meson mixing and rare decays, A notable example is the semileptonic lepton flavor universality (LFU) ratio e-. $\frac{\operatorname{rate}_{A_D} \cong \operatorname{We}(B^{as} \to D\tau \overline{v})}{\operatorname{H}(B^{as} \to D\tau \overline{v})} = D\tau \overline{v} = D\tau \overline$ R_D and the analogous observable defined for the $R_{ved} B^* \ell v$ transition R_{P_1} calculated in the winter 2016 HEAG edition [150] agree with the SM at the 4σ level, as shown in Eqs. (40) and (41) show below that despite strong con-It has been suggested in Ref. [147] that a minimal extension of the SM with Stralar LO1 of mass of the order of 1 TeV can $^{0}440 \pm 0.058 \pm 0.042$ $^{0}332 \pm 0.024 \pm 0.018$ in addition to observables $R_{K_{e}}$ and muon (g - 2) $0.293^{+0.037}_{-0.037} \pm 0.015$ $0.375_{-0.063}^{+0.001} \pm 0.026$ We begin by presenting new inclusive calculations ethettal., $0.336 \pm 0.027 \pm 0.030$ demonstrate that the measured central values (Phys. Rept. 641 (2016) 1-68 0.388 ± 0.047 0.321 ± 0.021 -0.29 0.300 ± 0.010 0.252 ± 0.005 are in tension with the SM, independent of form factor

the third and second generation fermion fields has long

v available from babar [1, 2] and belle [3]

[C.A. Cottlardo | Searches for COFV with ATLAS | SLeconepperitionsal selminar in 75 tov. Eb 18ve perform a general

44/36

LFU & LFV - R_{K*}, R_K

Angular distribution of $B^{\circ} \rightarrow K^{* \circ} \mu^{+} \mu^{-}$

R_{K^*} is 2.5 σ off in each bin

$$\mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$$

LHCb Preliminary	$low-q^2$	$central-q^2$
$\mathcal{R}_{K^{st 0}}$	$0.660\ ^{+}_{-}\ ^{0.110}_{0.070}\pm 0.024$	$0.685\ {}^{+}_{-}\ {}^{0.113}_{0.069}\pm 0.047$
95% CL	[0.517 – 0.891]	[0.530 - 0.935]
99.7% CL	[0.454 - 1.042]	[0.462 - 1.100]

4 Theoretical interpretations

- 4.1 Models with an extra Z' . . .
- 4.2 Models with lepto-quarks . . .
- 4.3 Models with loop mediators .
- 4.4 Fundamental composite Higgs

1704.05438

"Flavour anomalies after the R_K * measurement"

[C. A. Gottardo | Searches for cLFV with ATLAS | SLAC experimental seminar | 27 Nov. 2018]

LFU & LFV, BSM models

 V_2

 U_1

1

1

 $(\overline{3}, 2, 5/6)$

 $(\overline{3}, 1, 2/3)$

Simplified Models

M. Nardecchia https://bit.ly/2AgoA4I

"Only two options on the market"

-1 able \rightarrow . Whitch leddo-ddurks cut tedtoulce ddich o \rightarrow St i - unothur	Table	3:	Which	lepto-quarks	can	reproduce	which b	$\rightarrow s\ell^+\ell^-$	anomalie
--	-------	----	-------	--------------	-----	-----------	---------	-----------------------------	----------

Something recent accounting for all these flavour anomalies: 1808.00942

[C. A. Gottardo | Searches for cLFV with ATLAS | SLAC experimental seminar | 27 Nov. 2018]