RPC Phase II Trigger Primitives and combination with DT/CSC

Brieuc François on behalf of RPC group Hanyang University Nov 29th, 2018

(SP) x (2x (ma)

What is this talk about?

- Current RPC in Level-1 Trigger
- RPC Phase II Upgrade and Trigger Primitives
- > RPC in Phase II MTF's
- RPC combined to other Trigger Primitives

Ideas for future studies and thoughts on how to best use Upgraded RPC in Level-1

> Open for discussion! What is most useful/promising, what is feasible or not...

Current RPC in Level-1 Trigger

Normalized

10⁻²

 10^{-3}

 10^{-4}

1⊧-

CMS

Preliminarv

2018 data

- > RPC covers the three MTF's η regions
- 'Trigger Primitives' are clusters of strips

12.10 fb⁻¹ (13 TeV)

0.00410

0.08879

Space

Readout Strips

Mylar Sh

Entries

Mean

RMS

2

4

Bunch crossing

- Efficiency ~95%
- Provides φ measurement O(cm)
 - > η depends on the strip length
- Very good intrinsic time resolution but 25 ns digitization

5

RPC Phase II Trigger Primitives

brieuc.francois@cern.ch

¹² z (m)

9

10

11

- RPC contributes to the three Level-1 Muon Track Finders differently
 - > BMTF ($|\eta| < 0.83$): assign bunch crossing of DT segments without 8 fired layers + build RPC only segments in MB1 and MB2
 - > OMTF (0.83 < $|\eta|$ < 1.24): the 8 RPC chambers (5 in barrel, 3 in end-cap) are used for position information
 - > EMTF ($|\eta| > 1.24$): RPC hits are used in case of CSC segment absence

RPC Phase II Trigger Primitives

RPC Phase II Upgrade and Trigger Primitives

RPC Phase II Upgrade

RPC Phase II Upgrade

- Link System
 - > Improved timing: 25 ns \rightarrow ~1.5 ns
 - Extra smearing due to signal propagation along the strip
- Improved RPC (iRPC)
 - Extended η coverage with new RE3/1 and RE4/1 chambers
 - Better spatial resolution along the strip (~ 2cm)
 - > Time resolution of 1.5 ns

Impact of the RPC Upgrade on its Trigger Primitives (TP)

- > TP ϕ resolution
 - > TP position defined as the cluster center
 - > Driven by the strip pitch and **cluster size**
 - Expect improvement from position along the strip in RE3/1 and RE4/1 (2D measurement in iRPC)
 - Expect improvement from better timing in full detector
 - > Yet to be implemented and quantified

RPC in Phase II MTF's

RPC in Phase II MTF's

- BMTF has currently no access to RPC single clusters
 - Could benefit from them, especially in cracks.
 - Work to make them available for MC studies will start soon (maybe possible for run III as well!)
- OMTF already uses 'standalone' RPC clusters
 - Will benefit from better TP quality (true for all MTF)

EMTF

- Extended η coverage from iRPC importantly improves efficiency for good quality muons
- Further improvement expected from usage of timing and 2D measurement

Michalis Bachtis, David Hamilton

Phase-2 L1 Trigger Muon Algorithms Group Meeting (Nov 6th)

Blue: track + stub from TwinMux

RPC in Phase II MTF's

- Slow muons': trigger based on time of flight
 - Algorithm needs to run on several consecutive BX's $(\beta = 0.2 \text{ would require to have concurrent access to} \sim 5 \text{ BX})$
 - Need RPC sub-bx timing propagated in TP sent to MTF's
 - Need to send several BX's to DAQ at each L1Accept (~[-1, 5]) to allow offline analysis
 - Would require special procedure in iRPC η region (only two layers)
 - Additional timing info from tracker, GEM, CSC TP's?
 - More detail in John's talk tomorrow

Some (immature) **thoughts** about the possibilities from time resolution at L1

- 'Prompt muons': geometry based algorithms BUT
 - Spurious hits
 - Arrive in general at a different time then prompt muon hits and degrade p_T assignment
 - Their contribution could be diminished by applying a weighting procedure (or discarding them) based on the time arrival of associated RPC clusters
 - A first look without having to write new algorithms could be provided by the introduction of RPC time info in the input variables of EMTF++ DNN
- 'Displaced muons': could benefit from cluster time for models where the decay is delayed w.r.t. BX

RPC combined to other Trigger Primitives

Possibilities offered by a new L1T architecture

Combining detector information at early stages

- Can increase efficiency and lower rates ۶
- Brings more flexibility and freedom to implement future ideas ≻
- Allows to build more robust TP in view of aging ۶

Upgraded trigger

Legacy (emulated)

80

0.8 < |η| < 1.2 Tight L1 quality

L1 p_ ≥ 25 GeV

60

40

100

p_{_} (GeV/c)

Possibilities offered by a new L1T architecture

Phase I

RPC hits

OMTF*

* Module with RPC hit clustering and cluster selection

- Combine RPC + DT
 - DT could profit from RPC time to improve segment quality with less layer fired → more robust against aging
 - RPC profit from precise DT position to minimize smearing of RPC timing due to time propagation along the strip → better HSCP trigger, better TP,

CSC LCT's

CPPF*

EMTE

OMTF

Drift Tubes

4--

204

. . .

DT segments

TwinMux*

BMTF

BMTF

EMTF

Possibilities offered by a new L1T architecture

- Build CSC segment already using RPC information (ME3/1 – ME4/1)
 - Could resolve ambiguities when two hits in the same chamber (boosted objects, spurious hits)
 - ~10% probability to have spurious segment at HL-LHC in ME3/1 – ME4/1
 - → iRPC can resolve ambiguities in >99% → lower rate

Possibility for Phase II (conceptual)

- CMS Muon System shows great redundancy and complementarity
- > Usage of the complementarity in Level-1 Trigger has been greatly improved since the beginning of data-taking (Phase 0 → Phase I)
- Phase II Upgrade will bring yet new possibilities for complementarity, redundancy and for direct RPC contribution to Level-1 Trigger
 - > Better RPC trigger primitives thanks to better timing and measurement along strip (iRPC)
 - Synergy between RPC and DT: higher DT segment quality and better RPC timing
 - Solve CSC LCT ambiguity in ME3/1 and ME4/1 when several hits in one chamber
 - > Enhance RPC participation in MTF's thanks to the above points
 - + extended eta coverage
 - + usage of timing for slow muon algorithms (potentially also useful for displaced and prompt muons)
 - + propagating RPC clusters not matched to other TP to the Muon Track Finders (theoretically possible for run III)

Additional material

RPC phi resolution

RPC phi resolution

Phase II EMTF

- Single hit spatial resolution (ϕ measurements) depends on chamber, type of hit, etc ≻
 - DT: Order of hundreds of µm's ≻
 - CSC: Order of hundred of µm ۶
 - RPC[•] Order of **cm** ≻
- Timing information available at L1 ۶
 - **Bunch crossing granularity** ۶

90

Efficiency ۶

CMS Preliminary, 2016 data, 13 TeV. 4.42 fb⁻

DT (L1)

entries = 240

mean = 93.66

rms = 188

80

DT Chambers

50

40

30

20

10

~93-96% for all muon detectors at L1 ≻

Number of Rolls

50

100

DTLT Efficiency [%]

CMS

Preliminary

Data 2016

75

RPC Phase II Trigger Primitives

Online data format proposal

2											
3							1				
4	-			Clus							
5	Data frame format (bit)	Number of Clusters (1~10) (Maximum = 10)	Center of Cluster (1~96) or (97~192)	Cluster Width (8 strips)	Cluster sub-bx resolution(1~16)	LB Number	Partition Delay	EOD			
6	173	4	8	3	3 4		2	1			
7			6 I 1								
	Timing Signeture (bit)										
8	12										
9	13	$4 + (8 + 3 + 4 + 2) + \dots + (8 + 3 + 4 + 2) + 2 + 1 =$									
10			•		•						
11	Total Bits	4 + 10 X (8 + 3 + 4 + 2) + 2 + 1 = 173									
12	186										

Phase II Level-1 Trigger

NGUN

Phase II Trigger

J. Berryhill at L1T Annual Review

Jia Fu (L1T)

- > EMTF++ (P_T assignment via DNN)
 - Higher plateau
 - Sharper turn-on
 - > Flatter efficiency in η

	ME1/1	ME1/2	ME2	ME3	ME4	RE1	RE2	RE3	RE4	GE1/1	GE2/1	MEO
ф	1	1	1	1	1	*	1	1	1	1	1	1
θ	1	1	1	1	1	1	1	1	1	1	1	1
bend	1	-	1	1	1							1
F/R	1	1										1
ring			1	1	1							
+ pattern	straightn	ess										
+ zone												
+ median	theta											

