Layer 2 Barrel Muon Trigger Algorithms, Firmware, Hardware

Michalis Bachtis, Ismael Garcia, David Hamilton,

Tyler Lam, Simon Regnard, Maxx Tepper

University of California, Los Angeles

Introduction

- Requirements of the Muon Trigger for Phase II
 - Identify prompt muons (from EWK processes) with efficiency >95% and low thresholds
 - Exploit the full track trigger capabilities to build muons using information from the tracker and the muon system
 - Implement Standalone Muon Track Finding (a la Phase I) for backup, commissioning
 - Identify muons from the decays of long lived particles for Exotic/SUSY searches
 - Implement Standalone muon track finding without beamspot constraint
 - Identify other exotic signatures (e.g HSCPs)
- Phase II Barrel Muon Trigger (BMT)
 - Joint Muon/Trigger Project
 - Layer 1 → Takes data from DTs (+RPC) and produces trigger primitives with improved resolution
 - Layer 2 → Takes input from Layer 1 + Track trigger and performs standalone and combined tracker and muon system reconstruction

Tracking in the CMS barrel muon system

- 22 bits per station (maximum 88 bits per track)
- Current track finder assigns momentum using the Δφ between two stations + assuming the track comes from the center of the detector
- Beamspot constraint improves resolution

$$\frac{\sigma_{P_T}}{p_T} \sim \frac{1}{BL^2}$$

Beamspot constraint and displaced muons

- While the beamspot constraint improves resolution for prompt muons, it is sub-optimal for displaced particles
 - Momentum mis-measurement results in trigger inefficiency
- Need vertex unconstrained measurement

A Kalman Filter for BMTF

- Sequential algorithm: (mathematically equivalent to a χ² fit)
 - Propagate track inwards from station to station and match with a stub
 - Update track parameters and continue
- After reaching station $1 \rightarrow$ save measurement without vertex constraint
- Propagate to vertex and update \rightarrow vertex constrained measurement
- Already implemented and commissioned in Run II data → To be deployed by default for Run III - See Ioanna's talk

Efficiency for Prompt muons (140 PU)

Tyler Lam

- Algorithm tuned at a rate similar to BMTF for higher efficiency
- Kalman track finder improves efficiency for prompt muons

140 vs 200 PU interactions

Tyler Lam

- Efficiency does not drop at higher PU
- However studies need to be repeated with DT aging

Performance of Displaced Muons

• Efficiency measured using cosmic muons in data from the Cosmic-TP skim

- (In the tracker)
- Beam-spot constrained K-BMTF and BMTF suffer at large displacement
- K-BMTF when using the maximum pT of the two measurements recovers efficiency at large displacement
- The impact parameter measured by the Kalman filter (L1 dxy) is an additional handle to reduce rates

Tyler Lam

Standalone Muon Rates

- Single displaced muon rate higher than prompt muon rate
 - Due to the fact that the resolution without the vertex constraint is much worse
- Requiring high impact parameter is a handle to reduce it to acceptable levels
 - Obviously a veto of a track of a track trigger could work as well
 - Studied by Texas A&M
- Double displaced muon rate very low

Combining Tracker and Muon System

- From offline reconstruction we know:
 - Momentum measurement below 200 GeV dominated by the tracker
 - Therefore we do not need global muon fits in the trigger
 - For high efficiency ID is done by the tracker muon algorithm
 - Track is propagated to the muon system
 - Segments are associated to the tracks and a cut on number of matches is applied

Tracker Plus Stubs (TPS) → Tracker Muon in L1

David Hamilton

• Tracks from the track trigger with curvature $k=q/p_T$ are propagated to the muon system as : $\phi_{1} \cdot (k) = a \cdot k$

$$\phi_{b,j}(k) = a_j k$$

$$\phi_{t,j}(k) = \phi + b_j k$$

- The closest stub is found and pulls for position angle ϕ and bending angle $\phi_{\sf b}$ are formed
 - The resolution for the pull is derived as a parametric model from MC taking into account multiple scattering and TwinMux stub position error
 - A stub can be matched to a track using 1D info (φ) or 2D info (φ and φ_{b})

1D vs 2D matching

Signal

David Hamilton

- In the case of signal, the stub parameters are compatible with both position and direction of the tracks
- In case of random matches the distribution is uniform in 2D
- Therefore: There is a gain by using the full 2D information of the stub

Efficiency

- Requiring only one 2D stub match for TPS
 - Comparing with Technical Proposal Algo as implemented in CMSSW and standalone K-BMTF
- Requiring only one hit gives very high efficiency (~99%) and makes the trigger less sensitive to detector effects
 - Higher efficiencies in the wheel gaps since at this region very often we do not get more than one stub
 - Higher sensitivity to detector noise /background since we need only one hit!
 - High efficiency for low P_{T} muons that only leave one hit in the DTs!

Trigger rate

David Hamilton

- Low stats to estimate the rate but clear:
 - More than 1 order of magnitude reduction by using the track momentum measurement with TPS
- Technical proposal algorithm behavior is not understood
 - There must be something in CMSSW implementation

Firmware: Kalman Filter

- Firmware implemented tested and commissioned in P5 during Run II
- Implementation tested in Phase II chips
 - By using faster clock speeds, logic can be reused before next BX arrives

Firmware: Tracker Plus Stubs

- Implemented
 - Track propagation
 - Track-stub matching
 - Pull estimation and stub association
- To Do
 - Track overlap cleaning and sorting

	TPS	K-BMTF
LUT	7%	3%
FF	2%	2%
DSP	7%	9%
Latency	0.5 BX	4.0 BX

- Very low resource utilization in a ZYNQ Ultrascale +
 - Module processes 18 tracks in parallel
 - Module smaller than the Kalman filter (since no fitting is done)

D.Hamilton, T. Lam, M.Tepper

Plans for firmware development

- Currently we are proposing to do STA muons and combined muons in the same chip (more in Darin's talk)
- Work is going on to implement a single TMT node of Layer 2 including Standalone Muons and Track-Muon matching

R&D: High speed links

Maxx Tepper

- Built a small board to test Firefly optics up to 28 Gbps
 - Board plugs onto an evaluation board with a Virtex Ultrascale FPGA
 - Using low loss dielectric (Megtron 6)
- Signal integrity was tested with IBERT up to 28G with great results
 - Loopback through a 6m fiber

The OCEAN blade

- Baseboard with services
 - IMPC, Mezzanine for clocks and Zone2 ,Connectors
- Mezzanine connected through Z-ray interposer
- ZYNQ Ultrascale+ 19 EG
 - The Processor (PS) configures the programmable logic (PL) – no external configuration devices needed
 - 44 links at 16 Gbps, 28 links at 28 Gbps
 - About 2x the Virtex 7 logic blocks
 - PS -PL interconnect through AXI bus
 - XILINX next generation Versal chips like this but much bigger

OCEAN VO

- Received beginning of the month
 - Started testing
- Tests in November, all good
 - Power OK
 - Ethernet Switch OK
 - Communication with IPMC OK
 - Tested Power-on sequence
 - Reading sensor data
- To Do
 - Test the backplane connector
 - Test the backup JTAG chain to the Artix
 - Mechanical test
 - Does it fit?

Maxx Tepper

Mini-Backplane

- Small board simulating an ATCA crate
 - Allows table top tests for ATCA boards
- Features
 - Two Ethernet Hubs through RJ45 that go to the ethernet switch
 - Two clock sources (LHC, HQ-LHC)
 - A firefly that can be used to simulate TCDS II, LDAQ etc
- To be submitted for production by Friday
 - Cheap design \rightarrow Up to 5Gbps
 - When we get this, we finalize tests on OCEAN VO

Maxx Tepper

28 Gbps links firmware

- Implemented firmare for 28 Gbps transmission with bit alignment
- Tested on evaluation board -transmitting 640 bits/BX
 - Link Latency after optimizing clocks 3.6 BX
- After discussing with UOI, we converged into a common protocol
 - Therefore we will switch to that (see Costas' talk)

Test of the ZYNQ Ultrascale+ AXI interconnect

Ismael Garcia

- The ZYNQ chip we will be using in our mezzanine has a processor in the FPGA
- It is possible to stream data from the memory of the processor to the FPGA logic
 - Many applications including real time data analysis and memory lookup through the processor DDR

- We implemented DMA from the PL
 - LUT can be loaded to RAM through the processor and accessed via the FPGA
 - Allow single address access or bursts
 - Next step: Writing firmware to estimate the latency

Summary

- Algorithms
 - Kalman filter succesfully commissioned with Run II data
 - Tracker + Stubs algorithm very promising for Phase II
- Firmware
 - Kalman filter \rightarrow Done (except NNLO improvements in the next months)
 - TPS \rightarrow Most of it done
 - Next goal: Implement a full TMT node with both TPS and Kalman in the chip
- Hardware
 - OCEAN VO operational
 - Some tests to be done with the backplane board
 - Layout of the ZYNQ mezzanine on going
 - Plan to have it in time for Demonstration of Layer 2 for the TDR