A BMT Layer-1 technology demonstrator card and Links
Hardware and Firmware

S. Mallios1, K. Adamidis1, G. Bestintzanos1, C. Foudas1, G. Karathanasis2, P. Katsoulis1, N. Manthos1, I. Papadopoulos1, S. Sotiropoulos3, P. Sphicas2

(1) University of Ioannina
(2) University of Athens
(3) Institute of Accelerating Systems and Applications (IASA), Athens
Hardware
BMT Layer-1 demonstrator
Board Overview

FPGA XCKU040
- 20 x [16 Gb/s GTH transceivers]
- Speed grade: -2
- Footprint: FFVA1156 (BGA surface-mount packaging)

ZYNQ XC7Z010
System-on-Chip (SoC) for slow control over I2C
- Clock configuration (si570, Si5328 & Si5338)
- PMBus power supply monitoring
- Kintex FPGA SYSMON monitoring

Samtec Firefly (ECUO-Y12-16)
- 12x optical transceivers
- 16 Gb/s per channel

2 GB DDR4 (4x512KB)

QSFP28 FTLC9551REPM
- 4x25Gb/s transmitter
- Max link length 100m on OM4 Fiber (MMF)
- Hot-pluggable QSFP28 form factor

Power Modules
Kindex Ultrascale FPGA
XCKU040-2FFVA1156E

- Kintex UltraScale XCKU040 FPGA
- Best Price/Performance/Watt at 20 nm
- 20 x [16 Gb/s backplane - capable transceivers]
- Temperature grade : Extended (0°C - 100°C)
- Speed grade : -2
- Footprint : FFVA1156 (BGA surface-mount packaging)

Advantages:
+ Good price/performance ratio (~ 2 KChf)
+ 16 Gb/s GTH MGTs (sufficient for the BMT Layer-1)
+ Used on the KCU105 development xilinix board
+ Big enough to run Barrel Muon Track Finder kalman algorithm

Disadvantages:
- Relatively small to run more complex algorithms
- Absence of GTY MGTs (up to 32.75Gb/s)
Optics Overview

High Speed Optical Links

- 16 optical links - operating in excess of 16 Gbps
 - Twelve (12) optical FireFly links
 - optical flyover assembly, placed next to the FPGA.
 - 12 separate transmitter (TX) and receiver (RX) optical modules,
 - joined in a "Y" configuration and
 - terminate to a single 24 fiber MPO connector.
 - connectors placed mid-board and the data "fly" over the PCB, allowing easier routing.
 - Four (4) QSFP28 links transceiver module.
 - Part: Finisar FTLC9551REPM
 - Hot-pluggable QSFP28 form factor
 - Supports 103.1 Gbps of aggregate bit rate.
 - Rate is limited by the MGT’s maximum speed to 64 Gbps.
Clocking Overview

- 3 low-jitter programmable clock sources.
 - Dedicated, low jitter, quad clock generator (Si5338) for the high speed optical links.
 - Low-jitter frequency generator (Si570) is connected to the QSFP28 transceivers
 - Jitter attenuator (Si5328B) for the recovered clock.

- A fixed frequency clock source for reset and initialization FSMs

- SMA external clock input

- All programmable clocks are accessed through a dedicated I²C bus.
PCB Layout

16-layer stackup (ground-plane has been placed between each layer containing high-speed traces)

- Megtron-6 (Panasonic) substrate
 - excellent high-frequency performance and impedance properties.
- Backdrilling
- Serpentine routing to match route lengths of high speed differential pairs
Status and Planning

- Status of the PCB fabrication:
 - Received the bare-boards on the 20.10.2018
 - Sent for assembly
 - The assembly should take 2-3 weeks.
 - We expect to have two boards ready in the 2nd week in December

- 4 Bare Boards have been delivered to the assembly company.

- Two assembled boards are expected to arrive at CERN mid December 2018

- Post-assembly planning:
 - Perform basic hardware test to ensure that the individual devices and buses/interconnects are operational (power, clocks, and basic functional connectivity)
 - Optical/serial link validation (BER tests, board-to-board connectivity etc)
 - Implement advanced algorithms (i.e. Kalman barrel muon algorithm)
Firmware
16 Gbps asynchronous links
Links Overview

Overview
- Asynchronous design: algorithmic logic run in different speed than the link clock.
- FIFOs to cross between clock domains.
- Inject padding word to compensate the freq difference.
- Tested with 240Mhz algo clock and 250 MHz link clock.

Encoding
- 66b64b with synchronous gearbox.
- 2-bit header (coding bits).
- 3.125% overhead.

Latency
- Elastic Buffer bypassed.
- GTH latency 9 CLKS.
- Total latency 21 CLKS (including clock domain crossing FIFOs).
Protocol - Overview

- **Padding words injector**
 - Controls the header and the data/control words. It
 - Checks the incoming valid bit / padding flag / crc flag and injects the corresponding words.
 - Valid bit = 0 & padding word = 0 → header = b"10" (can use for alignment) → data = IDLE
 - Valid bit = 0 & padding word = 1 → header = b"10" (used for alignment) → data = Padding Word
 - Valid bit = 1 & padding word = 0 → header = b"01" (cannot use for alignment) → data = user data
 - Valid bit = 1 & padding word = 1 → header = b"10" (used for alignment) → data = Padding Word

- We check the data quality when the header is b"10"
 - Single errors (soft) are monitored
 - Continues errors (hard) trigger a re-alignment procedure

- Illegal header values considered link errors
- Align_time(max) = 100(clks/pad)*63bit *8 = 50400 clks or 201600 ns or ~200us
Protocol - Packets

<table>
<thead>
<tr>
<th>Valid Bit</th>
<th>Header</th>
<th>CODE (8-bit)</th>
<th>PAYLOAD (56-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>0x55</td>
<td>56-bit IDLE word (??)</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td></td>
<td>64-bit DATA</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td></td>
<td>64-bit DATA</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td></td>
<td>64-bit DATA</td>
</tr>
<tr>
<td>X</td>
<td>10</td>
<td>0x78</td>
<td>56-bit Padding word</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td></td>
<td>64-bit DATA</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td></td>
<td>64-bit DATA</td>
</tr>
</tbody>
</table>

Fifo empty

| Start of Packet | 1 | 01 | 64-bit DATA |
| End of packet | 0 | 10 | 32-bit CRC
| CRC word | 0 | 10 | 56-bit IDLE word |

Packet builder

- Based on the Aurora 66b/64b protocol
 - All transmissions performed using 64-bit blocks.
 - Aurora offers ten types of blocks that can be transmitted through an Aurora channel.
- We use 4 types of BLOCKs
 - User data block (normal data)
 - Padding block (CDR)
 - CRC block
 - IDLEs block
The functionality of the links was extensively tested

- using **XILINX KCU105** ultrascale development board. For the tests an
- FMC loopback card was used to implement a copper loopback quad link.

Latency

- The GTH latency ~9 CLKs adding the 2
- FIFO CDC latency ~6 CLKs (crossing between clock domains)
- Total link latency add up to 23 CLKs (~3.5 BXs @250MHz).

Bit Error Rate Tests:

- Sending PRBS-31 data over an FMC copper loopback card.
- Run for more than 72 hours
- No errors resulting in a **BER < 2x10^{-16}**

- IPBus integration work in progress (**K.Adamidis**)
 - Slow control tested (resets, link status, error monitoring)
 - Integrate with spy buffers to inject/read patterns
Ipbus integration over 16g asynchronous links

- The 16G links firmware is integrated with the Ipbus protocol to provide control (resets) and monitoring (link status indicators) over the links.

- IPbus Firmware was modified to operate over RJ-45 Ethernet cable and through the parts available on the demonstrator board:
 - A Marvell Alaska PHY device (M88E1111)
 - An RJ-45 Halo HFJ11-1G01E-L12RL connector

The usage of the Gigabit Transceiver Marvell PHY also sets free one of the FPGAs SFP transceiver.

- Additional registers and memory blocks interaction can be added at any time for further testing, control and monitoring.

Kosmas Adamidis
Hardware Summary

- **What is done**
 - ✓ Board Schematics completed
 - ✓ PCB layout completed
 - ✓ PCB fabrication completed

- **Scheduled**
 - ► Board assembly (ongoing)
 - ► Testing (links, algorithms etc)

Firmware Summary

- **What is done**
 - ✓ 16Gb/s asynchronous links using 64/66b encoding
 - ✓ Auto link alignment
 - ✓ Slow control with IPBus over Ethernet

- **Scheduled**
 - ► Test more data bus width - link clock combinations
 - ► Implement 16/25 Gbps links with GTYs