Endcap muon-track correlation in the L1 trigger

Darin Acosta⁽¹⁾, Luca Cadamuro⁽¹⁾, Sergo Jindariani⁽²⁾, Jacobo Konigsberg⁽¹⁾, Jia Fu Low⁽¹⁾, A. Madorsky⁽¹⁾, Vladimir Rekovic⁽¹⁾⁽³⁾,

⁽¹⁾: University of Florida, ⁽²⁾: Fermilab, ⁽³⁾: Vinca Institute, University of Belgrade

Joint Phase–II Muon Upgrade workshop November 29th, 2018

Fermilab

Triggering on muons at the HL-LHC

- The current Run II endcap trigger reconstruction in the endcap cannot sustain HL-LHC luminosities
 - cause: low p_T muons promoted to high p_T, effect becoming worst with high PU
 - effect: x3 rate increase @ 200
 PU. 15x rate w.r.t. now!
 - solution: improve p_T resolution and suppress p_T misassignment probability
- Muon rates are entirely driven by the p_T resolution: improving it is a key for HL-LHC muon triggering

Improving the p_T assignment

CMS

Reconstruction based on:

Outer system: standalone µ	Better p⊤ assignment with advanced machine learning methods	Described in Jia Fu's talk
Inner system: tracker μ	Excellent track trigger p _T resolution + ID from muon stub match	Described in Vladimir's talk
Inner + outer: global μ	Full inner and outer track reconstruction	This talk

- Correlation of inner tracker and muon system tracks for a global reconstruction of muons
 - tracker muon : p_T and position assignment
 - standalone muon : coherent set of hits (EMTF patterns) to suppress spurious matches

Position resolution - 9

Excellent position resolution from the inner tracker Multiple scattering degrades the resolution at low p_T

Correlation based on inner track position with p_T -dependent region

Position resolution – ϕ

Excellent position resolution from the inner tracker Multiple scattering degrades the resolution at low p_T

Correlation based on inner track position with p_T -dependent region

Scattering vs p_T

Scattering of muons spans more than one order of magnitude in ΔR

- □ large for low p_T muons
- □ decreases as 1/p_T until ~100 GeV
- □ broadens at high p_T because of bremsstrahlung
- Adaptive ("dynamic") matching regions are necessary to ensure efficiency at low p_T while minimising the risk of spurious matches at high p_T

Size in ΔR of the scattering cone (containing (90%)² (95%)², (99%)² of muons) for the propagated track position at muon endcap surface (S2)

Designing a correlator

Correlation

L1 TT + EMTF tracks with $\Delta \phi$, $\Delta \vartheta$ within a matching window usage of EMTF p_T information also possible but not investigated yet

- outer-inner: EMTF → L1TT
 - ✓ one window per muon minimise lookups and complexity
 - ✗ less precise and more prone to multiple matches

Can "confirm" the EMTF p_T assignment, but reduced capability of global muon reconstruction

- inner-outer: L1 TT → EMTF
 - ✓ precise account for scattering effects
 - ✗ many lookups for matching windows (one per track)

Global muon reconstruction \Rightarrow **Approach used in the following**

The matching algorithm

Algorithm structure

Performance – efficiency

- Dynamic windows ensure high efficiency over the entire p_T spectrum
 - ~100% efficiency achieved at plateau
 - $\hfill\square$ efficiency preserved in the low p_T region

10

Performance – rate

- Large rate reduction achieved w.r.t. fixed ΔR matching
 - small impact from relaxed matching
 - no penalty on the efficiency

11

Towards the implementation

- L1 track constraints
 - algo: each track to match to multiple muon candidates
 - hw: tracks expected to arrive sequentially (TMT)
- ⇒ pipelined structure that matches simultaneously a track to the EMTF candidates
 - parallel "units" matching an EMTF with an incoming track
 - minimises the latency added, since tracks already arriving at different times
 - minimises resources (LUT, lookups), since match properties just depend on the track and can be dispatched to the various matching units
- Several optimisations under study to reduce the resources needed
 e.g. LUT input compression, data flow, ...
- Firmware implementation in development using High-Level Synthesis (HLS)

Implementation schematics

- Several "matcher" units in parallel, matching an EMTF to the same incoming track
- Arbitration of tracks done "on-the-fly" storing the arbitration parameter

Conclusions

- Global muon reconstruction at trigger level is envisaged at the HL-LHC to improve the performance
- Strong dependence of bending and scattering vs p_T calls for dynamic correlation region
- Algorithm based on this idea using inner-out matching developed and implemented in CMSSW
- Excellent performance in efficiency and rate
 - 6 kHz of absolute rate @ 20 GeV threshold assuming 200 PU, 2808 colliding bunches
 - $\times 3$ (6) better rate reduction vs fixed $\Delta R = 0.2$ (0.7)
- Proceeding towards firmware implementation
 - to be ultimately downstream of the EMTF++
 - streamlining the correlator algorithm to minimise latency and resources
- Complementary to other approaches (standalone reconstruction and single stub match)

Comparing with the TP performance

Results from the TP cannot be reproduced with the tested ΔR distances

- note: PU 140 for the TP, 200 for the other curves
- not clear which scaling applied for the absolute rate (e.g. # of colliding bunches)
- plan to run on PU 140 for a final comparison

16