

MUON & CORRELATOR TRIGGER ARCHITECTURE OPTIONS

Achieving Muon Universality?

D.Acosta

11/29/2018 Acosta - Muon Trigger Architecture

Science Drivers and Requirements

- * Maintain sensitivity to electroweak scale physics at higher luminosity and pileup of the HL LHC
 - Report all standalone muon coordinates and momenta in convention to facilitate global correlation with tracks from the <u>Track</u> <u>Trigger</u>
 - The tracker will have far better P_T resolution for rate reduction
 - Incorporate additional HL LHC forward muon detectors to improve
 - Efficiency, redundancy, and improved standalone PT measurement
 - > Maintain standalone muon trigger (without track combination) for sufficiently high P_T threshold
 - HL LHC is "only" 3-4X higher lumi, and we increased the max L1 rate
- * Add sensitivity to new physics scenarios, i.e. acceptance to <u>displaced muons</u> and <u>HSCP</u>s from long-lived particle decays
 - > Additional patterns/logic (displaced tracks, timing)
 - > Expanded momentum assignment (vertex constrained and not)

Comment about displaced muons in endcap

* A large source of displaced muons for the endcap regions is beam halo, which is <u>not included</u> in our HL LHC simulations

(Thanks to Osvaldo Miguel Colin)

- * Looking at rates in 2015, the halo muon rate per bunch was measured using the CSCTF (predecessor to EMTF).
- * Scaling to 2500 bunches gives ~30 kHz!
- * Algorithms for displaced muons will need to consider that other background source
 - \succ non-pointing, but <u>not</u> parallel to beamline (e.g. displaced in x-y)

11/29/2018 Acosta - Muon Trigger Architecture

UF FLORIDA 4

Endcap Muon Standalone Track-Finding

- * Proposed baseline EMTF++ for Phase-2 does regional standalone (SA) track-finding in the endcaps ("Layer-1")
 - > 12 sectors, 6 per endcap
 - Takes trigger primitives from existing or new muon detector electronics
- Recent studies show that "tracker muons" (track + muon stub matches) are interesting to include for performance reasons beyond just track + SA muon
- Could have EMTF++ send out muon stubs in addition to standalone muons to the Correlator for matching with tracks
 - If time multiplexed, send all stubs within a time window around current BX (HSCPs, monitoring,...)

Variation of Muon Track-Finding

- * The proposed variation of this is to postpone SA muon track-finding and only send stubs from Layer-1 (concentrated to higher bandwidth links).
 - Then the Correlator layer finds <u>both</u> standalone muons and track+muon matches
 - > Matches current barrel region architecture proposal
 - Allows smaller/cheaper FPGAs for data concentration (or re-use old hardware)
 - But adds to latency, and project cost (who does this concentration layer?)
 - One option is to use current Phase-1 EMTF as a concentrator for Phase-2

Endcap Data Concentrator Only

- * Remove neighbor inputs (and barrel) for concentrator mode (no need)
 - > CSC:
 - 3.2 Gbps links from legacy MPCs (40)
 - > RPC endcap via CPPF/New RPC electronics:
 - 12.5 Gbps links from LBs + RE1/3+RE2/3 (8)
 - > iRPC forward:
 - RE3/1: 10 Gbps links (3)
 - RE4/1: 10 Gbps links (3)
 - > GEM:
 - MEO: 10 Gbps links (3)
 - GE1/1: 10 Gbps links (8)
 - GE2/1: 10 Gbps links (9)
 - Summary:
 - 74 links per 60° sector
 - > Could fit into existing EMTF system, for example
 - Optical link input limit is 84 x 10 Gbps for an MTF7 uTCA processor, and output is 24 x 10 Gbps

An Endcap Data Concentrator Layer-1

- * Despite the large number of input links, the stub occupancy in the muon system is rather low even at HL LHC
 - > The input links are mostly sending "zeroes"
- * The first layer can zero suppress, concentrate, and time multiplex muon stub data for transmission to Layer-2
 - > If this is an "intelligent" Layer-1, it also can perform standalone muon trackfinding in the endcap in parallel to concentration (as currently)
- * What constitutes a stub?
 - > Could be a multilayer CSC LCT, or MEO GEM stub
 - PRC and GE1/GE2 hits might need a coincidence with a CSC because of background noise rates (for now don't include in calculations)
 - Good case for forming "super-primitives" in Concentration Layer
 - > Allows for finding "tracker muons" in Correlator (TT tracks + single stub)
- * Concentrator Layer-1 is essentially equivalent to a fast DAQ path, but sending data for every BX rather than on L1Accept (as current EMTF)
- * How much data?

CSC LCT Occupancy from Data

Layer-1 Output Data for Standalone Muons

- * Assume up to 3 muons / sector / BX
 - > Any combination of prompt or displaced muons
- * Start from Phase-1 Muon Trigger Detector Note:
 - > 192 bits for 3 muons \rightarrow 64 bits/µ (Phase-1)
- To this add another P_T word for displaced µ hypothesis, (+9 bits), plus more spare bits for future use
- ✤ Propose: ~100 bits/µ (a là Track-Trigger)
 - > Up to 3µ /sector/BX at 64/66 encoding → <u>300 bits</u>
 → 1x 16 Gbps link/sector
 - One output link ≥ 16 Gbps per sector per target destination for standalone tracks, even without longer time multiplexing latency

* How many stubs need be sent on (perhaps) additional links?

"Intelligent" Layer-1

CSC+ME0 stubs per 60° sector

- For now assume one stub takes as much data as a CSC LCT sent from the MPC: ~40 bits
 Table 1. MPC to SP Data Format
 - > 32 bits per correlated LCT
 - Plus additional bits [7] for labeling which CSC LCT of the possible 5*18 = 90 CSC LCTs/BX/sector
- * Unassociated stubs from pileup are ~0.8/BX/sector
 - > \leq 2 @ 95% CL \rightarrow 80 bits / BX / sector
 - > If time-multiplexed, need to send stubs from a time window around current BX
 - Useful for HSCP trigger plus commissioning and operations monitoring to see stubs before an after in-time crossing
 - Including +/- 2 BX \rightarrow ~4 unassociated stubs/sector (\leq 8 @ 95%CL)
 - \rightarrow 8 stubs * 40 bits = 320 bits / 5BX / sector
- * Allow stubs from up to 3 muon tracks per sector for a signal in event
 - > Assume muons (and their segments) are in-time (1 BX, even if TMUX)
 - > Assume each track can have 4 stubs
 - > 3 tracks * 4 stubs * 40 bits ~ 500 bits

		15	14	13	12	11	08	07	06		00
Frame	1	Quality		L/R	CLCT Pattern #	CLCT Pattern ID					
	2	BC1	BC0	SE	VP	CSC ID		AM		Wire Group ID	

Endcap Data Bandwidth to Layer-2

- * Endcap muon data to send to Layer-2, per sector ~1 kb of data/sector
 - > Tracks: 300 bits (if done in Layer-1) \rightarrow 12.5 Gbps
 - > Stubs: 600, 800 bits (TMUX=1, >1) \rightarrow 25, 33 Gbps \pm TMUX
 - > 46 Gbps @ 64/66 encoding [33 Gbps stubs only]
- * For a latency of 1 BX+serdes for transmission (e.g. TMUX=1):
 - > Tracks + stubs: 3 x 16 Gbps links per sector, or 2 x 25 Gbps
 - Stubs only: 1 x 25 Gbps links, TMUX=1 or 2 x 16 Gbps links, TMUX>1
- ★ For a latency of 3 BX+serdes (e.g. for TMUX ≥ 3)
 Or even more data for longer latencies
 - > 1 x 16 Gbps link per sector (or higher BW)
 - Or 1 x 10 Gbps (old EMTF concentrator, 8b10 encoding), 4 BX latency
- * For entire endcap muon tracks + stubs to a target Layer-2 node
 - > 36 x 16 Gbps @ 1 BX [24 x 16 Gbps or 12 x 25 Gbps, stubs only]
 - > 12 x 16 Gbps @ 3 BX

Muon Correlator Board Logic and Latency

- * Note that latency to receive muon data should be ~2.5 μ s, whereas that for the Track Trigger is ~5 μ s
 - Can receive (and buffer) all muon data for a given BX before tracks are available
 - Standalone muon reconstruction can start in advance of track matching and not add to overall latency
 - But now done globally, with TMUX, and not just regionally

Increased logic, but also increased latency available

Can immediately test tracks with all SA muons + stubs as tracks are received

- * Track Trigger
 - > 18 x 25 Gbps
- * Endcap Muon
 - > 12 x \geq 16 Gbps (or 10 Gbps)
- * Barrel Muon
 - > 12 x \geq 16 Gbps (assume same as for endcap)
- * Total links per Muon Correlator time slice
 - > 42 links
- * Could fit more than one time slice per APx card:
 - > 9 cards (2 time slices) \rightarrow 60 links for longer muon serdes (+3BX)
 - \succ 6 cards (3 time slices) \rightarrow 78 links for longer muon serdes (+6BX)
- * Or could fit additional subsystem inputs for same 18 cards

Muon Correlator Board Inputs with MB Concentrator, Regional Model

* Track Trigger

Take all time slices into one board

- > 36×25 Gbps (18 time slices by 2 links per 40° nonet region)
- * Endcap Muon
 - > (<) 12×25 Gbps (up to 12 sectors, higher bandwidth to get stubs in 1 BX without TMUX)
- * Barrel Muon
 - > (<) 12×25 Gbps (assume same as for endcap)
- * Total links per Muon Correlator time slice
 - > (<) 60 links (+12 if sending SA tracks from endcap Layer-1)
- * Target 9 APx cards (one per 40°)
- * SA Muon Logic in Layer-2
 - Could limit SA muon reconstruction to relevant sector around Tracker nonet → move SA muon tracking also to 40° sector ?
- * Correlator logic
 - > Will need stubs from wider region of muon system (~180°), but covered by links above
 - Leaving tracker data time multiplexed implies correlator target would receive links from 9 regions per time slice
- * Could even double region to 2 nonets (80°) for 5 APx cards
 - > (<) 96 links (one board only gets a 40° region)

Architecture Conclusions, 1

- ★ Could perform standalone muon reconstruction <u>and</u> track matching in one layer for barrel-overlap-endcap in a set of 18 cards → unifies muon trigger
 - > I/O takes 90 links per card
 - But need to verify logic usage in FPGA to check if logic for entire detector can fit in the FPGA resources and in the latency
 - > Requires rewriting EMTF algorithm from regional \rightarrow global+TMUX
 - Requires group(s) to contribute an endcap concentrator layer, or re-use the Phase-1 EMTF
 - Could be used to form super-primitives
- * Adding a BMTF Concentrator/TF Layer can reduce number of Layer-2 cards required for track matching, or accommodate additional subsystem inputs
 - Requires group(s) to contribute a barrel concentrator/TF layer

Architecture Conclusions, 2

- * Having an "intelligent Layer-1 that finds SA muons in addition to stub concentration does not significantly increase the data BW to Layer-2
 - > Still one output link per Correlator target
 - > Reduces logic resources required in Layer-2, but adds to Layer-1
 - > Would allow use of baseline regional EMTF++ algorithm
 - > But breaks barrel-endcap symmetry unless barrel region does same
 - And would need to share data across boundary
- * A regional approach (vs. TMUX) is also feasible for track+muon correlation
- * Standalone muon reconstruction can take place before Tracker Trigger tracks are available for correlation
 - > ~2.5 μs vs 5.0 μs , either in Layer-1 or Layer-2 (assuming SA latency ~ Phase-1 latency)

BACKUP

11/29/2018 Acosta - Muon Trigger Architecture

