Phase-2 Level-1 Trigger Architecture Options

Jeffrey Berryhill, Fermilab

Phase-2 Muon/Trigger Workshop

CMS HL-LHC Readout and Trigger Electronics

J. Berryhill

Level-1 Trigger Arch

Phase-2 Muon/Trigger

Nov. 28, 2018

iTDR design

Building blocks

- Processing units come in two different FPGA form factors:
 - 96-link data in/out packages (C2104) supporting 16-28 Gbps:
 e.g. Xilinx VU9P (VUxP supports up to 96 32-Gbps)
 - 64-link data in/out packages (B2104) supporting 16 Gbps: e.g. Xilinx KU115 (KUxP can support up to 32 32-Gbps)
- Different speed grades are available in each case (~30% speed boost available)
- Different logic resources are available in each case (~2X more DSPs)
- ATCA Boards in our R&D program can accommodate one (Apx) or up to two (Serenity) such chips per board. Two-chip boards can daisy-chain resources with low latency, if required.
- Each ATCA crate houses up to 12 ATCA boards + 2 slots for DAQ, each rack houses 2 crates
- For a given throughput, data can be typically organized into geometric regions, or different time slices (TMUX), or both.

J. Berryhill

Level-1 Trigger Arch

Phase-2 Muon/Trigger

TMUX*Regions is ~invariant amount of computing power

Nov. 28, 2018

p. 3

Muon Trigger System

iTDR design

Barrel Muon Trigger layer 1

- DT chambers organized in 12 phi sectors * 5 wheels
- DT FE cards deliver 48 links of phi view at 10 Gbps per sector per wheel
- **RPC/HO deliver 6 links** at 10 Gbps per sector per wheel
- DT chamber phi view + RPC/HO can be sent to 60 64-link cards (1/sector/wheel)
- DT chamber theta view can be sent to 24 64-link cards (1/sector/2.5 wheel)

BMT layer 1 output to layer 2 (track finders)

- Assume that each stub is 2x the size of current one= 64 bits and we produce 4 instead of 2 stubs per chamber
- Each sector could make 4 stubs x 4 chambers = 16 stubs
 - Therefore 16 stubs x 64 bits = 1024 bits /BX/sector = 4 16G links/sector
- **iTDR scenario**: Layer 2 performs SA barrel muon track-finding, TMUX = 1
 - A geometric partitioning of 5 wheels*3 phi spanning 12 64-link boards meets requirements

BMT Layer-2: 12 64-link boards 1 board sees all 5 wheels, phi+theta view, 3 phi sectors (=1 sector + nearest neighbors)

EMTF Input

Prior assumptions, per 60° sector, with neighbor sharing (+N):

- <u>95 links per 60° sector</u> [Includes sharing]
- 12 cards total, ~1100 total input links for ~7 Tbps bandwidth
- In a TMUX =1 arrangement, 12 96-link cards can cover (2 endcaps * 6 sixtydeg sectors)

EMTF: for each endcap, six 96-link boards consuming one 60 deg sector + nearest neighbor (2*6 = 12 boards total).

Endcap system Backend, organized in 2 endcaps and six 60deg sectors, 1100 links

In this scenario, OMTF is realized as part of each EMTF board FW. OMTF functions could be also be realized as a few physically separate boards.

Muon sorting/duplicate removal

- In a regionalized track finding design, there will be duplicate tracks in neighboring regions
- To limit output payload downstream, there can also be an advantage to PT or quality sorting
- In Phase 1 this was accomplished with the GMT and the endcap global sorter
- 1-2 ATCA boards receiving BMTF/OMTF/EMTF output provide the same function
- Alternatively these functions could be deferred to the correlator.

Correlator and Global Trigger System

iTDR design

Correlator Functional Diagram

Correlator Trigger Physical Partitioning

TMUX1 time slices

To Global Trigger

2 physical layers TMUX=3,6,12,18 with regionalization possible

Variable number of object producers/time slice Object producers could see entire PF and SA content

Object producers upgradeable <=TMUX2 boards at a time.

Correlator Layer 1 design

 Some possible solutions for TMUX 6 and TMUX 18 shown below. TMUX 9 can also work in this scenario.

	V1	V2
TMUX	6	18
Total FPGAs	24	36
Φ x η	2 x 2	1 x 2
Payload	20000 (PF+P), 40000 (PF Calo)	20000 (PF+P), 40000 (PF Calo)
link (Rx) / FPGA	49	35
link (Tx) / FPGA	2, 3	2, 3

Correlator Layer1 to Layer 2

		V1	V2
	ТМИХ	6	18
	Total FPGAs	24	36
	Φ x η	2 x 2	1 x 2
	Payload	20000 (PF+P) , 40000 (GCT)	20000 (PF+P) , 40000 (GCT)
	link (Rx) / FPGA	49	35
	link (Tx) / FPGA	2, 3	2, 3
LAYER 1 TO LAYER 2 S At high Layer 2 TMUX, just one layer 2 board per time slice is possible If Layer 2 TMUX is small, or downshifted from Layer 1, can have some functional division of labor per time slice		2 SCENARIO	
		Algo set	All algos, "GCT" and PF+Puppi inputs
		x M algo sets	x 18 TM
J. B	erryhill Level-1 Trigger Arch	Phase-2 Muon/Trigger	Nov. 28, 2018 p.

Beyond iTDR muon scenarios: track-muon matching

- There are scientific advantages to **matching muon stubs with tracker tracks**.
 - Higher efficiency than tracks+SA muons, with acceptable rate
 - More robust L1 muon reconstruction (ensures against muon chamber aging or downtime)
- There are potential operational benefits to **physically partition track-muon matching** from the correlator system
 - Muon triggers ultimately may have no/minimal calorimeter dependence
 - Track-muon matching is an additional firmware burden on the correlator system
 - A separate physical path to GT which does not go through the correlator
 - Similar arguments can be made for partitioning other non-PF functions of the correlator system (SA track objects, SA calorimeter objects)
- We are exploring scenarios that introduce one or both of these features
- Request from CE BE to process endcap muon candidates for MIPs
 - Requires EMTF SA or track-matched muons interfaced to CE BE to help determine DAQ readout upon L1A

Muon-Track Matching Scenario A: defer to CORL1

J. Berryhill I

Level-1 Trigger Arch

Phase-2 Muon/Trigger

Nov. 28, 2018

p. 17

Muon-Track Matching Scenario B: GMT

Level-1 Trigger Arch

Phase-2 Muon/Trigger

Nov. 28, 2018

p. 18

Possible BMT Layer-2/Track Trigger interface

- Each layer 1 board receives 57 links @ 10 G + RPC and outputs 18 links @16G
- Each Layer 2 TMT 96-link board receives
 - 2 fibres *9 regions =18 fibres from track trigger @ 25G
 - +60 fibres from Layer 1 @16G

J. Berryhill

EMTF + Muon Correlator Architecture

Muon-Track Matching Scenario C: GMT++

J. Berryhill

Level-1 Trigger Arch

Phase-2 Muon/Trigger

Nov. 28, 2018

p. 21

Muon Trigger: To learn for TDR baseline

- In scenario A (defer to correlator):
 - full estimate of stub data bandwidth
 - FW resources needed on top of PF reco
- In scenario B (iTDR + GMT):
 - Full estimate of stub data bandwidth
 - How many boards? >=4 for I/O
- In scenario C (GMT++):
 - Cost/resources for EMT or BMT concentration
 - FW resources needed for 1 board/time slice

Timeline for TDR

- CWR draft needed by Sept. 2019
- For complete set of architecture choices, require additional study of resource usage per FPGA and data concentration options
- TIMELINE
 - By late winter workshop, reduce to a ~few options that are technically feasible. Evaluate latency and data organization merits of each.
 - By early summer workshop, decide on a baseline option for TDR and define TDR demonstrator architecture specs.
 - TDR demonstrator results delivered for TDR draft Fall 2019.
 - Specification continues through Q4 to prepare for preproduction phase in 2020

J. Berryhill

Phase-2 Muon/Trigger

Demonstrator Specification

- Next three months: prototypes evaluated for the different production lines
- Spring 2019: algorithm firmware demonstration on viable prototypes
- Summer 2019: slice configuration and demonstration on a best-effort basis
 - Input transmitter and/or output receiver can be an actual prototype, if available, or emulated by an available board(s) with the necessary links
 - With DTH/TCDS if available, otherwise can emulate
- Essential triplets:
 - BCP \rightarrow RCT \rightarrow GCT
 - DT inputs \rightarrow BMT Layer 1 \rightarrow BMT Layer 2
 - CSC inputs \rightarrow EMTF \rightarrow EMGS
 - GCT+CE+TT+Muon \rightarrow CORL1 \rightarrow CORL2
 - CORL2 \rightarrow GT \rightarrow L1A

Timeline for Construction/Commissioning

- Pre-TDR: establish baseline and change control for interfaces and TPGs
- Pre-ESR (2021Q3): finalize interfaces. Slice tests of all for final design.
- Full production batches delivered to CERN 2023Q3
- 2.75 years available for testing and commissioning as interfacing electronics are installed (currently reserving ~6 months float).
- Pre-beam commissioning:
 - Internal relative timing/TMUXing of L1 (with ECAL pulses, e.g.) and available interfaces
 - Muon cosmics in LS3, run 3 muon data possible for some ingredients (GEM)
 - With Tracker inserted starting 2026

Summary

- We have evaluated board and link counts for each subsystem, using primarily 16 Gbps links connecting 96-link or 64-link chips
- Key algorithms have been evaluated on candidate chips and are expected to meet latency budgets and resource limits
 - CORL2 and GT chief exceptions. These are also the most flexibly defined systems.
- Counts in the scenarios considered are consistent with range specified in iTDR
- Still considering options for different architecture choices (TMUX, regionalization, physical partitioning of functions), to converge on a baseline in six months.
- Demonstration of essential chains scheduled for next summer as part of the TDR