

Sequence Modelling

RNN, biRNN, BPTT, LSTM, RecNN

Fifth Machine Learning in High Energy Physics Summer School, MLHEP 2019

Ekaterina Artemova

National Research University Higher School of Economics

Sequence modelling

Recurrent neural network Definition Training

Gated architectures

RNN generators

The Transformer

Implementation in PyTorch

Take-home message

Bonus: Recursive NN

Sequence modelling

Sequential data

- 1. Time series
 - > Financial data analysis: stock market, commodities, Forex
 - > Healthcare: pulse rate, sugar level (from medical equipment and wearables)
- 2. Text and speech: speech understanding, text generation
- 3. Spatiotemporal data
 - > Self-driving and object tracking
 - > Plate tectonic activity
- 4. Physics: jet identification
- 5. etc.

Sequence modelling I

Sequence classification

1. $x = x_1, x_2, ..., x_n, x_i \in V$ - objects 2. $y \in \{1, ..., L\}$ - labels 3. $\{(x^{(1)}, y_1), (x^{(2)}, y_2), ..., (x^{(m)}, y_m)\}$ - training data Classification problem: $\gamma : x \to y$

- 1. Activity recognition: x pulse rate, y activity (walking, running, peace)
- 2. Opinion mining: x sentence, y sentiment (positive, negative)
- 3. Trading: x stock market, y action (sell, buy, do nothing)

Sequence modelling II

Sequence labelling

1.
$$oldsymbol{x} = x_1, x_2, \dots, x_n$$
, $x_i \in V$ - objects

2.
$$y = y_1, y_2, \dots, y_n$$
, $y_i \in \{1, \dots, L\}$ - labels

3.
$$\{(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}), (\boldsymbol{x}^{(2)}, \boldsymbol{y}^{(2)}), \dots, (\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)})\}$$
 — training data

4. exponential number of possible solutions : if length(x) = n, there are L^n possible solutions

Classification problem: $\gamma: {m x}
ightarrow {m y}$

- 1. Part of speech tagging: x word, y part of speech (verb, noun, etc.)
- 2. Genome annotation: x DNA, y genes
- 3. HEP tracking: x a set of hits with backgrounds, y hit classification

Sequence modelling III

Sequence transduction / transformation

1.
$$\boldsymbol{x} = x_1, x_2, \dots, x_n, x_i \in V_{source}$$
 - objects
2. $\boldsymbol{y} = y_1, y_2, \dots, y_n, y_i \in V_{target}$ - objects
3. $\{(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}), (\boldsymbol{x}^{(2)}, \boldsymbol{y}^{(2)}), \dots, (\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)})\}$ - training data
4. $\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}$ are of different length
Transduction problem: $\boldsymbol{x}_{source} \rightarrow \boldsymbol{y}_{target}$

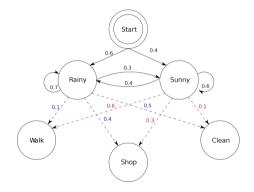
- 1. Machine translation: x sentence in German, y sentence in English
- 2. Speech recognition: x -spoken language, y -text
- 3. Chat bots: x -question, y -answer

Traditional ML approaches to sequence modeling

- > Hidden Markov Models (HMM)
- > Conditional Random Fields (CRF)
- Local classifier: for each x define features, based on x₋₁, x₊₁, etc, and perform classification n times

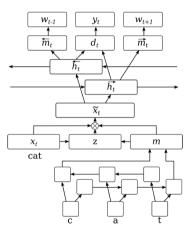
Problems:

- 1. Markov assumption: fixed length history
- 2. Computation complexity



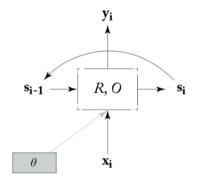
DL approaches to sequence modeling

- Recurrent neural network and its modifications: LSTM, GRU, Highway
- > Transformer
- > 2D Convolutional Neural Network
- > Pointer network
- Problems:
 - 1. Training time
 - 2. Amount of training data



- > Input: sequence of vectors
- > $x_{1:n} = x_1, x_2, \dots, x_n$, $x_i \in \mathbb{R}^{d_{in}}$
- > Output: a single vector $y_n = RNN(x_{1:n}), y_n \in \mathbb{R}^{d_{out}}$
- > For each prefix $x_{i:j}$ define an output vector y_i : $y_i = RNN(x_{1:i})$
- > RNN^* is a function returning this sequence for input sequence $x_{1:n}$: $y_{1:n} = RNN^*(x_{1:n})$, $y_i \in \mathbb{R}^{d_{out}}$

Figure: Goldberg, Yoav. Neural network methods for natural language processing



Sequence modelling with RNN

1. Sequence classification

Put a dense layer on top of RNN to predict the desired class of the sequence after the whole sequence is processed

$$p(l_j | \boldsymbol{x}_{1:n}) = \texttt{softmax}(RNN(\boldsymbol{x}_{1:n}) \times W + b)_{[j]}$$

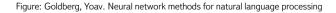
2. Sequence labelling

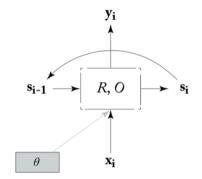
Produce an output y_i for each input RNN reads in. Put a dense layer on top of each output to predict the desired class of the input

$$p(l_j | oldsymbol{x}_j) = \texttt{softmax}(RNN(oldsymbol{x}_{1:j}) imes W + b)_{[j]}$$

More details on RNN

- > $RNN^*(x_{1:n}, s_0) = y_{1:n}$
- > $y_i = O(s_i)$ simple activation function
- > $s_i = R(s_{i-1,x_i})$, where R is a recursive function, s_i is a state vector
- > s₀ is initialized randomly or is a zero vector
 > x_i ∈ ℝ^{d_{in}}, y_i ∈ ℝ<sup>d_{out}, s_i ∈ ℝ^{f(d_{out})}
 </sup>
- > θ shared weights





More details on RNN

$$s_i = R(x_i, s_{i-1}) = g(s_{i-1}W^s + x_iW^x + b)$$

$$y_i = O(s_i) = s_i$$

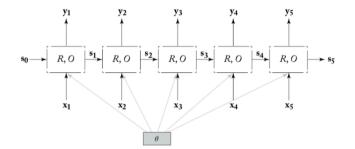
$$y_i, s_i, b \in \mathbb{R}^{d_{out}}, x_i \in \mathbb{R}^{d_{in}}$$

$$W^x \in \mathbb{R}^{d_{in} \times d_{out}}, W^s \in \mathbb{R}^{d_{out} \times d_{out}}$$

 $\begin{array}{c} y_{i} \\ \\ s_{i-1} \longrightarrow R, 0 \\ \hline \\ \theta \\ x_{i} \end{array} \qquad s_{i}$

Figure: Goldberg, Yoav. Neural network methods for natural language processing

RNN unrolled

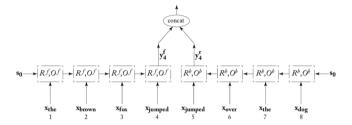


$$s_4 = R(s_3, x_4) = R(R(s_2, x_3), x_4) = R(R(R(s_1, x_2), x_3), x_4) =$$
$$= R(R(R(R(s_0, x_1), x_2), x_3), x_4)$$

Figure: Goldberg, Yoav. Neural network methods for natural language processing

Bidirectional RNN (Bi-RNN)

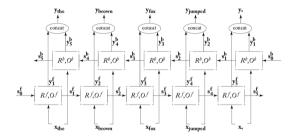
The input sequence can be read from left to right and from right to left. Which direction is better?



$$biRNN(x_{1:n}, i) = y_i = [RNN^f(x_{1:i}); RNN^r(x_{n:i})]$$

Figure: Goldberg, Yoav. Neural network methods for natural language processing

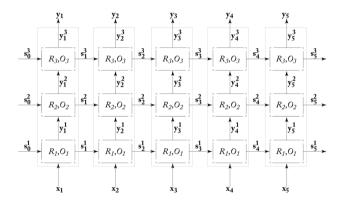
Bi-RNN



$$biRNN^*(x_{1:n}, i) = y_{1:n} = biRNN(x_{1:n}, 1) \dots biRNN(x_{1:n}, n)$$

Figure: Goldberg, Yoav. Neural network methods for natural language processing

Multilayer RNN



Connections between different layers are possible too: $y_1^2 = \text{concat}(x_1, y_1^1)$

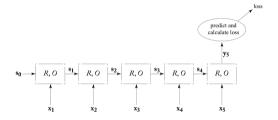
Figure: Goldberg, Yoav. Neural network methods for natural language processing



Sequence classification

- $\mathbf{y}_n = O(s_n)$
- > prediction = $MLP(\hat{y_n})$
- > Loss: $L(\hat{y_n}, y_n)$
- > *L* can take any form: cross entropy, hinge, margin, etc.

Figure: Goldberg, Yoav. Neural network methods for natural language processing



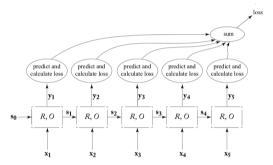
Sequence labelling

- > Output $\hat{t_i}$ for each input $x_{1,i}$
- > Local loss: $L_{local}(\hat{t_i}, t_i)$
- > Global loss:

 $L(\hat{t_n}, t_n) = \sum_i L_{local}(\hat{t_i}, t_i)$

> *L* can take any form: cross entropy, hinge, margin, etc.

Figure: Goldberg, Yoav. Neural network methods for natural language processing



Backpropogation through time

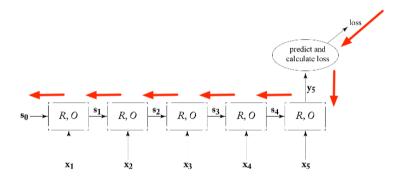


Figure: Goldberg, Yoav. Neural network methods for natural language processing

$$\begin{split} s_i &= R(x_i, s_{i-1}) = g(s_{i-1}W^s + x_iW^x + b) \\ \text{Chain rule: } \frac{\partial L}{\partial w} &= \frac{\partial L}{\partial p(\hat{y_5})} \frac{\partial p(\hat{y_5})}{\partial s_4} (\frac{\partial s_4}{\partial w} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial w} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_w} + \dots \\ \text{Exaterina Artemova} \end{split}$$

Vanishing gradient problem

Chain rule: $\frac{\partial L}{\partial w} = \frac{\partial L}{\partial p(\hat{y}_5)} \frac{\partial p(\hat{y}_5)}{\partial s_4} (\frac{\partial s_4}{\partial w} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial w} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_w} + \ldots)$ g - sigmoid

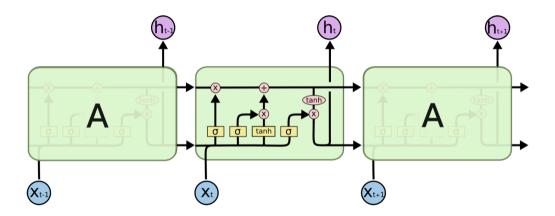
- 1. Many sigmoids near 0 and 1
 - \succ Gradients $\rightarrow 0$
 - > Not training for long term dependencies
- 2. Many sigmoids > 1
 - > Gradients $\rightarrow + \inf$
 - > Not training again

Solution: gated architectures (LSTM and GRU)

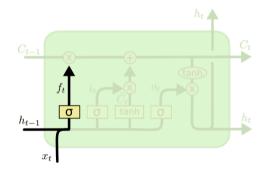
Gated architectures

Controlled memory access

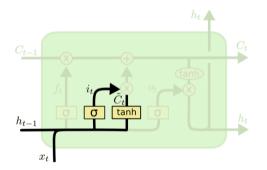
- > Entire memory vector is changed: $s_{i+1} = R(x_i, s_i)$
- > Controlled memory access: $s_{i+1} = g \odot R(x_i, s_i) + (1-g)s_i$ $g \in [0, 1]^d, s, x \in \mathbb{R}^d$
- > Differential gates: $\sigma(g),g'\in\mathbb{R}^d$
- > This controllable gating mechanism is the basis of the LSTM and the GRU architectures



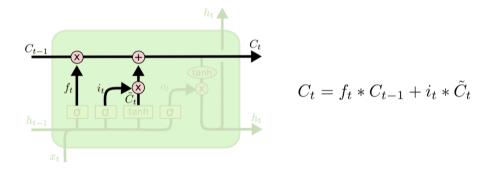
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

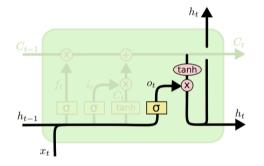


$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$



$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

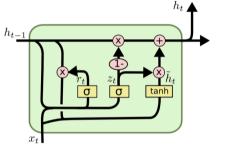




$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated recurrent unit

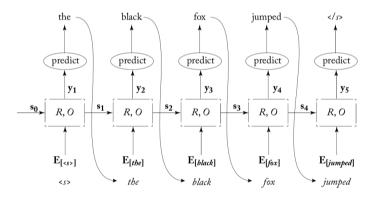


$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

RNN generators

Sequence generation

Teacher forcing: x := < s > x, y := x < /s? $x : < s > x_1x_2...x_n$ $y : x_1x_2...x_n < /s >$



Sequence generation

- > Examples of generated texts:
 - http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- > Examples of generated MIDI music: https://towardsdatascience.com/ how-to-generate-music-using-a-lstm-neural-network-in-keras-6878

Pros and cons of RNNs

- 1. Advantages:
 - > RNNs are popular and successful for variable-length sequences
 - > The gating models such as LSTM are suited for long-range error propagation
- 2. Problems:
 - > The sequentiality prohibits parallelization within instances
 - > Long-range dependencies still tricky, despite gating

The Transformer

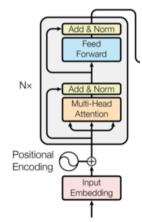
Ekaterina Artemova

38

The Transformer

An alternative architecture to RNN which allows of parallel and faster training

- > Several layers of identical modules
- Fach module consists of Multi-Head Attention and Feed Forward layers
- Input: embeddings. To get embeddings for numerical input, apply any dense layer
- > Positional embeddings to make use of the order of the sequence



Scaled Dot-Product Attention

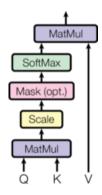
An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors:

$$Attention(Q, K, V) = \texttt{softmax}(\frac{QK^T}{\sqrt{d_k}})V,$$

where the input consists of queries Q and keys K of dimension d_k and values V of dimension d_v

Figure: Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

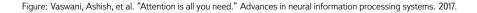
Ekaterina Artemova

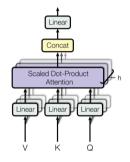


Multi-head Attention

Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions

 $MultiHead(Q, K, V) = concat(head_1, ..., head_h)W^O$, where $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$ and W are projection matrices.

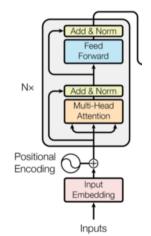




The Transformer

Bringing it all together:

- > LayerNorm: $\frac{x-\mu}{\sigma}$
- > Residual connection: LayerNorm(x+Sublayer(x))
- > Position-wise Feed-Forward Networks: $FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$



Positional Encoding

We need to inject some information about the relative or absolute position of x_{pos} in the sequence:

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$$
Positional encoding: $x = x + PE(x)$

Figure: Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Ekaterina Artemova

Implementation in PyTorch

Recurrent neural networks

```
torch.nn.RNN(input_size, hidden_size,
    num_layers, nonlinearity, bias,
    batch_first, dropout, bidirectional)
```

```
torch.nn.LSTM(input_size, hidden_size,
    num_layers, bias,
    batch_first, dropout, bidirectional)
```


from fairseq.models import transformer

Take-home message

Take-home message

- > There is a lot of sequential data around us
- > Before DL: HMM, MEMM
- > Mid 2010 DL: RNN, LSTM, etc
- > Late 2010 DL: the Transformer
- > 2020: stack more transformer blocks (Trasformer XL)

Bonus: Recursive NN

Modeling trees with Recursive NN

- > Input: $x_1, x_2, ..., x_n$
- > A binary tree T can be represented as a unique set of triplets (i, k, j), s.t. i < k < j, $x_{i:j}$ is parent of $x_{i:k}$, $i_{k+1,j}$
- > RecNN takes as an input a binary tree and returns as output a corresponding set of inside state vectors $s_{i:j}^A \in \mathbb{R}^d$
- > Each state vector $s_{i:j}^A$ represents the corresponding tree node $q_{i:j}^A$ and encodes the entire structure rooted at that node

RecNN

> Input: x_1, x_2, \ldots, x_n and a binary tree T

>
$$RecNN(x_1, x_2, \dots, x_n, T) = \{ \boldsymbol{s_{i:j}^A} \in \mathbb{R}^d | q_{i:j}^A \in T \}$$

$$\mathbf{s}_{i:i}^{A} = v(x_{i})$$

$$\mathbf{s}_{i:j}^{A} = R(A, B, C, \mathbf{s}_{i:k}^{B}, \mathbf{s}_{k+1:j}^{C}), q_{i:k}^{B} \in T, q_{k+1:j}^{C} \in T$$

$$\mathbf{s}_{i:k}^{A} = R(A, B, C, \mathbf{s}_{i:k}^{B}, \mathbf{s}_{k+1:j}^{C}) = g([\mathbf{s}_{i:k}^{B}, \mathbf{s}_{k+1:j}^{C}]W)$$

RecNN

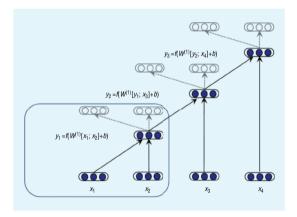


Figure: Zhang, Jiajun & Zong, Chengqing. (2015). Deep Neural Networks in Machine Translation: An Overview

Ekaterina Artemova