
Sequence Modelling
RNN, biRNN, BPTT, LSTM, RecNN
Fifth Machine Learning in High Energy Physics Summer School,
MLHEP 2019

Ekaterina Artemova

National Research University Higher School of Economics



Sequence modelling

Recurrent neural network
Definition
Training

Gated architectures

RNN generators

The Transformer

Implementation in PyTorch

Take-home message

Bonus: Recursive NN



Sequence modelling



Sequential data

1. Time series
› Financial data analysis: stock market, commodities, Forex
› Healthcare: pulse rate, sugar level (from medical equipment and wearables)

2. Text and speech: speech understanding, text generation

3. Spatiotemporal data
› Self-driving and object tracking
› Plate tectonic activity

4. Physics: jet identification

5. etc.

Ekaterina Artemova 4



Sequence modelling I

Sequence classification

1. x = x1, x2, . . . , xn, xi ∈ V - objects

2. y ∈ {1, . . . , L} - labels

3. {(x(1), y1), (x
(2), y2), . . . , (x

(m), ym)} – training data
Classification problem: γ : x → y

1. Activity recognition: x – pulse rate, y – activity (walking, running, peace)

2. Opinion mining: x – sentence, y – sentiment (positive, negative)

3. Trading: x – stock market, y – action (sell, buy, do nothing)�

Ekaterina Artemova 5



Sequence modelling II
Sequence labelling

1. x = x1, x2, . . . , xn, xi ∈ V - objects

2. y = y1, y2, . . . , yn, yi ∈ {1, . . . , L} - labels

3. {(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))} – training data

4. exponential number of possible solutions : if length(x) = n, there are Ln

possible solutions
Classification problem: γ : x → y

1. Part of speech tagging: x – word, y – part of speech (verb, noun, etc.)
2. Genome annotation: x – DNA, y – genes
3. HEP tracking: x - a set of hits with backgrounds, y – hit classification �

Ekaterina Artemova 6



Sequence modelling III

Sequence transduction / transformation

1. x = x1, x2, . . . , xn, xi ∈ Vsource - objects

2. y = y1, y2, . . . , yn, yi ∈ Vtarget - objects

3. {(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))} – training data

4. x(1), y(1) are of different length
Transduction problem: xsource → ytarget

1. Machine translation: x – sentence in German, y – sentence in English

2. Speech recognition: x – spoken language, y – text

3. Chat bots: x – question, y – answer �

Ekaterina Artemova 7



Traditional ML approaches to sequence modeling

› Hidden Markov Models (HMM)

› Conditional Random Fields (CRF)

› Local classifier: for each x define features,
based on x−1, x+1, etc, and perform
classification n times

Problems:

1. Markov assumption: fixed length history

2. Computation complexity�

Ekaterina Artemova 8



DL approaches to sequence modeling

› Recurrent neural network and its modifications:
LSTM, GRU, Highway

› Transformer

› 2D Convolutional Neural Network

› Pointer network

Problems:

1. Training time

2. Amount of training data

Ekaterina Artemova 9



Recurrent neural network



Recurrent neural network

Definition



Recurrent neural network

› Input: sequence of vectors

› x1:n = x1, x2, . . . , xn, xi ∈ Rdin

› Output: a single vector
yn = RNN(x1:n), yn ∈ Rdout

› For each prefix xi:j define an output vector yi:
yi = RNN(x1:i)

› RNN∗ is a function returning this sequence for
input sequence x1:n:
y1:n = RNN∗(x1:n), yi ∈ Rdout

Figure: Goldberg, Yoav. Neural network methods for natural language processing

Ekaterina Artemova 12



Sequence modelling with RNN

1. Sequence classification
Put a dense layer on top of RNN to predict the desired class of the sequence after
the whole sequence is processed

p(lj |x1:n) = softmax(RNN(x1:n)×W + b)[j]

2. Sequence labelling
Produce an output yi for each input RNN reads in. Put a dense layer on top of each
output to predict the desired class of the input

p(lj |xj) = softmax(RNN(x1:j)×W + b)[j]

Ekaterina Artemova 13



More details on RNN

› RNN∗(x1:n, s0) = y1:n

› yi = O(si) – simple activation function

› si = R(si−1,xi), where R is a recursive
function, si is a state vector

› s0 is initialized randomly or is a zero vector

› xi ∈ Rdin , yi ∈ Rdout , si ∈ Rf(dout)

› θ – shared weights

Figure: Goldberg, Yoav. Neural network methods for natural language processing

Ekaterina Artemova 14



More details on RNN

› si = R(xi, si−1) = g(si−1W
s + xiW

x + b)

› yi = O(si) = si

› yi, si, b ∈ Rdout , xi ∈ Rdin

› W x ∈ Rdin×dout ,W s ∈ Rdout×dout

Figure: Goldberg, Yoav. Neural network methods for natural language processing

Ekaterina Artemova 15



RNN unrolled

s4 = R(s3, x4) = R(R(s2, x3), x4) = R(R(R(s1, x2), x3), x4) =

= R(R(R(R(s0, x1), x2), x3), x4)
Figure: Goldberg, Yoav. Neural network methods for natural language processing

Ekaterina Artemova 16



Bidirectional RNN (Bi-RNN)
The input sequence can be read from left to right and from right to left. Which direction
is better?

biRNN(x1:n, i) = yi = [RNNf (x1:i);RNN r(xn:i)]
Figure: Goldberg, Yoav. Neural network methods for natural language processing

Ekaterina Artemova 17



Bi-RNN

biRNN∗(x1:n, i) = y1:n = biRNN(x1:n, 1) . . . biRNN(x1:n, n)

Figure: Goldberg, Yoav. Neural network methods for natural language processing

Ekaterina Artemova 18



Multilayer RNN

Connections between different layers are possible too: y21 = concat(x1, y11)�
Figure: Goldberg, Yoav. Neural network methods for natural language processing

Ekaterina Artemova 19



Recurrent neural network

Training



Sequence classification

› ŷn = O(sn)

› prediction = MLP (ŷn)

› Loss: L(ŷn, yn)

› L can take any form: cross entropy,
hinge, margin, etc.

Figure: Goldberg, Yoav. Neural network methods for natural language processing

Ekaterina Artemova 21



Sequence labelling

› Output t̂i for each input x1,i
› Local loss: Llocal(t̂i, ti)

› Global loss:
L(t̂n, tn) =

∑
i Llocal(t̂i, ti)

› L can take any form: cross entropy,
hinge, margin, etc.

Figure: Goldberg, Yoav. Neural network methods for natural language processing

Ekaterina Artemova 22



Backpropogation through time

Figure: Goldberg, Yoav. Neural network methods for natural language processing

si = R(xi, si−1) = g(si−1W
s + xiW

x + b)

Chain rule: ∂L
∂w = ∂L

∂p(ŷ5)
∂p(ŷ5)
∂s4

(∂s4∂w + ∂s4
∂s3

∂s3
∂w + ∂s4

∂s3
∂s3
∂s2

∂s2
∂sw

+ . . .)
Ekaterina Artemova 23



Vanishing gradient problem

Chain rule: ∂L
∂w = ∂L

∂p(ŷ5)
∂p(ŷ5)
∂s4

(∂s4∂w + ∂s4
∂s3

∂s3
∂w + ∂s4

∂s3
∂s3
∂s2

∂s2
∂sw

+ . . .)

g – sigmoid

1. Many sigmoids near 0 and 1
› Gradients→ 0
› Not training for long term dependencies

2. Many sigmoids > 1

› Gradients→ + inf

› Not training again

Solution: gated architectures (LSTM and GRU)

Ekaterina Artemova 24



Gated architectures



Controlled memory access

› Entire memory vector is changed: si+1 = R(xi, si)

› Controlled memory access: si+1 = g ⊙R(xi, si) + (1− g)si
g ∈ [0, 1]d, s, x ∈ Rd

› Differential gates: σ(g), g′ ∈ Rd

› This controllable gating mechanism is the basis of the LSTM and the GRU
architectures

Ekaterina Artemova 26



Long short term memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Ekaterina Artemova 27

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Long short term memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Ekaterina Artemova 28

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Long short term memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Ekaterina Artemova 29

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Long short term memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Ekaterina Artemova 30

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Long short term memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Ekaterina Artemova 31

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Gated recurrent unit

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Ekaterina Artemova 32

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


RNN generators



Sequence generation
Teacher forcing: x :=< s > x, y := x < /s?

x :< s > x1x2 . . . xn
y : x1x2 . . . xn < /s >

Ekaterina Artemova 34



Sequence generation

› Examples of generated texts:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

› Examples of generated MIDI music: https://towardsdatascience.com/
how-to-generate-music-using-a-lstm-neural-network-in-keras-68786834d4c5

Ekaterina Artemova 35

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://towardsdatascience.com/how-to-generate-music-using-a-lstm-neural-network-in-keras-68786834d4c5
https://towardsdatascience.com/how-to-generate-music-using-a-lstm-neural-network-in-keras-68786834d4c5


Pros and cons of RNNs

1. Advantages:
› RNNs are popular and successful for variable-length sequences
› The gating models such as LSTM are suited for long-range error propagation

2. Problems:
› The sequentiality prohibits parallelization within instances
› Long-range dependencies still tricky, despite gating

Ekaterina Artemova 36



The Transformer



The Transformer
An alternative architecture to RNN which allows of parallel and faster training

› Several layers of identical modules

› Each module consists of Multi-Head Attention
and Feed Forward layers

› Input: embeddings. To get embeddings for
numerical input, apply any dense layer

› Positional embeddings to make use of the order
of the sequence

Figure: Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing systems. 2017.

Ekaterina Artemova 38



Scaled Dot-Product Attention
An attention function can be described as mapping a
query and a set of key-value pairs to an output,
where the query, keys, values, and output are all
vectors:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V,

where the input consists of queriesQ and keysK of
dimension dk and values V of dimension dv

Figure: Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing systems. 2017.

Ekaterina Artemova 39



Multi-head Attention

Multi-head attention allows the model to jointly
attend to information from different representation
subspaces at different positions

MultiHead(Q,K, V ) = concat(head1, ..., headh)WO,

where headi = Attention(QWQ
i , KWK

i , V W V
i )

andW are projection matrices.

Figure: Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing systems. 2017.

Ekaterina Artemova 40



The Transformer
Bringing it all together:

› LayerNorm: x−µ
σ

› Residual connection:
LayerNorm(x+Sublayer(x))

› Position-wise Feed-Forward Networks:
FFN(x) = max(0, xW1 + b1)W2 + b2

Figure: Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing systems. 2017.

Ekaterina Artemova 41



Positional Encoding
We need to inject some information about the relative or absolute position of xpos in the
sequence:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

Positional encoding: x = x+ PE(x)

Figure: Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing systems. 2017.

Ekaterina Artemova 42



Implementation in PyTorch



Recurrent neural networks

torch.nn.RNN(input_size, hidden_size,
num_layers, nonlinearity, bias,
batch_first, dropout, bidirectional)

torch.nn.LSTM(input_size, hidden_size,
num_layers, bias,
batch_first, dropout, bidirectional)

Ekaterina Artemova 44



Transformers

from fairseq.models import transformer

Ekaterina Artemova 45



Take-home message



Take-home message

› There is a lot of sequential data around us

› Before DL: HMM, MEMM

› Mid 2010 DL: RNN, LSTM, etc

› Late 2010 DL: the Transformer

› 2020: stack more transformer blocks (Trasformer XL)

Ekaterina Artemova 47



Bonus: Recursive NN



Modeling trees with Recursive NN

› Input: x1, x2, . . . , xn
› A binary tree T can be represented as a unique set of triplets (i, k, j),
s.t. i < k < j, xi:j is parent of xi:k, ik+1,j

› RecNN takes as an input a binary tree and returns as output a corresponding set of
inside state vectors sAi:j ∈ Rd

› Each state vector sAi:j represents the corresponding tree node qAi:j and encodes the
entire structure rooted at that node

Ekaterina Artemova 49



RecNN

› Input: x1, x2, . . . , xn and a binary tree T

› RecNN(x1, x2, . . . , xn, T ) = {sAi:j ∈ Rd|qAi:j ∈ T}
› sAi:i = v(xi)

› sAi:j = R(A,B,C, sBi:k, s
C
k+1:j), q

B
i:k ∈ T, qCk+1:j ∈ T

› R(A,B,C, sBi:k, s
C
k+1:j) = g([sBi:k, s

C
k+1:j ]W )

Ekaterina Artemova 50



RecNN

Figure: Zhang, Jiajun & Zong, Chengqing. (2015). Deep Neural Networks in Machine Translation: An Overview

Ekaterina Artemova 51


	Sequence modelling
	Recurrent neural network
	Definition
	Training

	Gated architectures
	RNN generators
	The Transformer
	Implementation in PyTorch
	Take-home message
	Bonus: Recursive NN

