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Sequence modelling



Sequential data

1. Time series
› Financial data analysis: stock market, commodities, Forex
› Healthcare: pulse rate, sugar level (from medical equipment and wearables)

2. Text and speech: speech understanding, text generation

3. Spatiotemporal data
› Self-driving and object tracking
› Plate tectonic activity

4. Physics: jet identification

5. etc.
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Sequence modelling I

Sequence classification

1. x = x1, x2, . . . , xn, xi ∈ V - objects

2. y ∈ {1, . . . , L} - labels

3. {(x(1), y1), (x
(2), y2), . . . , (x

(m), ym)} – training data
Classification problem: γ : x → y

1. Activity recognition: x – pulse rate, y – activity (walking, running, peace)

2. Opinion mining: x – sentence, y – sentiment (positive, negative)

3. Trading: x – stock market, y – action (sell, buy, do nothing)�
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Sequence modelling II
Sequence labelling

1. x = x1, x2, . . . , xn, xi ∈ V - objects

2. y = y1, y2, . . . , yn, yi ∈ {1, . . . , L} - labels

3. {(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))} – training data

4. exponential number of possible solutions : if length(x) = n, there are Ln

possible solutions
Classification problem: γ : x → y

1. Part of speech tagging: x – word, y – part of speech (verb, noun, etc.)
2. Genome annotation: x – DNA, y – genes
3. HEP tracking: x - a set of hits with backgrounds, y – hit classification �
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Sequence modelling III

Sequence transduction / transformation

1. x = x1, x2, . . . , xn, xi ∈ Vsource - objects

2. y = y1, y2, . . . , yn, yi ∈ Vtarget - objects

3. {(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))} – training data

4. x(1), y(1) are of different length
Transduction problem: xsource → ytarget

1. Machine translation: x – sentence in German, y – sentence in English

2. Speech recognition: x – spoken language, y – text

3. Chat bots: x – question, y – answer �
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Traditional ML approaches to sequence modeling

› Hidden Markov Models (HMM)

› Conditional Random Fields (CRF)

› Local classifier: for each x define features,
based on x−1, x+1, etc, and perform
classification n times

Problems:

1. Markov assumption: fixed length history

2. Computation complexity�
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DL approaches to sequence modeling

› Recurrent neural network and its modifications:
LSTM, GRU, Highway

› Transformer

› 2D Convolutional Neural Network

› Pointer network

Problems:

1. Training time

2. Amount of training data
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Recurrent neural network



Recurrent neural network

Definition



Recurrent neural network

› Input: sequence of vectors

› x1:n = x1, x2, . . . , xn, xi ∈ Rdin

› Output: a single vector
yn = RNN(x1:n), yn ∈ Rdout

› For each prefix xi:j define an output vector yi:
yi = RNN(x1:i)

› RNN∗ is a function returning this sequence for
input sequence x1:n:
y1:n = RNN∗(x1:n), yi ∈ Rdout

Figure: Goldberg, Yoav. Neural network methods for natural language processing
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Sequence modelling with RNN

1. Sequence classification
Put a dense layer on top of RNN to predict the desired class of the sequence after
the whole sequence is processed

p(lj |x1:n) = softmax(RNN(x1:n)×W + b)[j]

2. Sequence labelling
Produce an output yi for each input RNN reads in. Put a dense layer on top of each
output to predict the desired class of the input

p(lj |xj) = softmax(RNN(x1:j)×W + b)[j]
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More details on RNN

› RNN∗(x1:n, s0) = y1:n

› yi = O(si) – simple activation function

› si = R(si−1,xi), where R is a recursive
function, si is a state vector

› s0 is initialized randomly or is a zero vector

› xi ∈ Rdin , yi ∈ Rdout , si ∈ Rf(dout)

› θ – shared weights

Figure: Goldberg, Yoav. Neural network methods for natural language processing
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More details on RNN

› si = R(xi, si−1) = g(si−1W
s + xiW

x + b)

› yi = O(si) = si

› yi, si, b ∈ Rdout , xi ∈ Rdin

› W x ∈ Rdin×dout ,W s ∈ Rdout×dout

Figure: Goldberg, Yoav. Neural network methods for natural language processing

Ekaterina Artemova 15



RNN unrolled

s4 = R(s3, x4) = R(R(s2, x3), x4) = R(R(R(s1, x2), x3), x4) =

= R(R(R(R(s0, x1), x2), x3), x4)
Figure: Goldberg, Yoav. Neural network methods for natural language processing
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Bidirectional RNN (Bi-RNN)
The input sequence can be read from left to right and from right to left. Which direction
is better?

biRNN(x1:n, i) = yi = [RNNf (x1:i);RNN r(xn:i)]
Figure: Goldberg, Yoav. Neural network methods for natural language processing
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Bi-RNN

biRNN∗(x1:n, i) = y1:n = biRNN(x1:n, 1) . . . biRNN(x1:n, n)

Figure: Goldberg, Yoav. Neural network methods for natural language processing
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Multilayer RNN

Connections between different layers are possible too: y21 = concat(x1, y11)�
Figure: Goldberg, Yoav. Neural network methods for natural language processing
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Recurrent neural network

Training



Sequence classification

› ŷn = O(sn)

› prediction = MLP (ŷn)

› Loss: L(ŷn, yn)

› L can take any form: cross entropy,
hinge, margin, etc.

Figure: Goldberg, Yoav. Neural network methods for natural language processing
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Sequence labelling

› Output t̂i for each input x1,i
› Local loss: Llocal(t̂i, ti)

› Global loss:
L(t̂n, tn) =

∑
i Llocal(t̂i, ti)

› L can take any form: cross entropy,
hinge, margin, etc.

Figure: Goldberg, Yoav. Neural network methods for natural language processing
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Backpropogation through time

Figure: Goldberg, Yoav. Neural network methods for natural language processing

si = R(xi, si−1) = g(si−1W
s + xiW

x + b)
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Vanishing gradient problem

Chain rule: ∂L
∂w = ∂L

∂p(ŷ5)
∂p(ŷ5)
∂s4

(∂s4∂w + ∂s4
∂s3

∂s3
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+ . . .)

g – sigmoid

1. Many sigmoids near 0 and 1
› Gradients→ 0
› Not training for long term dependencies

2. Many sigmoids > 1

› Gradients→ + inf

› Not training again

Solution: gated architectures (LSTM and GRU)
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Gated architectures



Controlled memory access

› Entire memory vector is changed: si+1 = R(xi, si)

› Controlled memory access: si+1 = g ⊙R(xi, si) + (1− g)si
g ∈ [0, 1]d, s, x ∈ Rd

› Differential gates: σ(g), g′ ∈ Rd

› This controllable gating mechanism is the basis of the LSTM and the GRU
architectures
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Long short term memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long short term memory

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Gated recurrent unit

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RNN generators



Sequence generation
Teacher forcing: x :=< s > x, y := x < /s?

x :< s > x1x2 . . . xn
y : x1x2 . . . xn < /s >
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Sequence generation

› Examples of generated texts:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

› Examples of generated MIDI music: https://towardsdatascience.com/
how-to-generate-music-using-a-lstm-neural-network-in-keras-68786834d4c5
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Pros and cons of RNNs

1. Advantages:
› RNNs are popular and successful for variable-length sequences
› The gating models such as LSTM are suited for long-range error propagation

2. Problems:
› The sequentiality prohibits parallelization within instances
› Long-range dependencies still tricky, despite gating
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The Transformer



The Transformer
An alternative architecture to RNN which allows of parallel and faster training

› Several layers of identical modules

› Each module consists of Multi-Head Attention
and Feed Forward layers

› Input: embeddings. To get embeddings for
numerical input, apply any dense layer

› Positional embeddings to make use of the order
of the sequence

Figure: Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing systems. 2017.
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Scaled Dot-Product Attention
An attention function can be described as mapping a
query and a set of key-value pairs to an output,
where the query, keys, values, and output are all
vectors:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V,

where the input consists of queriesQ and keysK of
dimension dk and values V of dimension dv

Figure: Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing systems. 2017.
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Multi-head Attention

Multi-head attention allows the model to jointly
attend to information from different representation
subspaces at different positions

MultiHead(Q,K, V ) = concat(head1, ..., headh)WO,

where headi = Attention(QWQ
i , KWK

i , V W V
i )

andW are projection matrices.

Figure: Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing systems. 2017.
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The Transformer
Bringing it all together:

› LayerNorm: x−µ
σ

› Residual connection:
LayerNorm(x+Sublayer(x))

› Position-wise Feed-Forward Networks:
FFN(x) = max(0, xW1 + b1)W2 + b2

Figure: Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing systems. 2017.
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Positional Encoding
We need to inject some information about the relative or absolute position of xpos in the
sequence:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

Positional encoding: x = x+ PE(x)

Figure: Vaswani, Ashish, et al. “Attention is all you need.” Advances in neural information processing systems. 2017.
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Implementation in PyTorch



Recurrent neural networks

torch.nn.RNN(input_size, hidden_size,
num_layers, nonlinearity, bias,
batch_first, dropout, bidirectional)

torch.nn.LSTM(input_size, hidden_size,
num_layers, bias,
batch_first, dropout, bidirectional)
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Transformers

from fairseq.models import transformer
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Take-home message



Take-home message

› There is a lot of sequential data around us

› Before DL: HMM, MEMM

› Mid 2010 DL: RNN, LSTM, etc

› Late 2010 DL: the Transformer

› 2020: stack more transformer blocks (Trasformer XL)
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Bonus: Recursive NN



Modeling trees with Recursive NN

› Input: x1, x2, . . . , xn
› A binary tree T can be represented as a unique set of triplets (i, k, j),
s.t. i < k < j, xi:j is parent of xi:k, ik+1,j

› RecNN takes as an input a binary tree and returns as output a corresponding set of
inside state vectors sAi:j ∈ Rd

› Each state vector sAi:j represents the corresponding tree node qAi:j and encodes the
entire structure rooted at that node
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RecNN

› Input: x1, x2, . . . , xn and a binary tree T

› RecNN(x1, x2, . . . , xn, T ) = {sAi:j ∈ Rd|qAi:j ∈ T}
› sAi:i = v(xi)

› sAi:j = R(A,B,C, sBi:k, s
C
k+1:j), q

B
i:k ∈ T, qCk+1:j ∈ T

› R(A,B,C, sBi:k, s
C
k+1:j) = g([sBi:k, s

C
k+1:j ]W )
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RecNN

Figure: Zhang, Jiajun & Zong, Chengqing. (2015). Deep Neural Networks in Machine Translation: An Overview
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