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Why bother?

Predictive models are great, why do we need causal inference?

I in real life today’s train could differ from tomorrow’s test
I especially if we want to act on the results of the predictions!
I causal mechanisms are more stable than correlations



What is causality?

Lewis D. (1973) Causation. The journal of philosophy: 556-567: causation is “something that makes
a difference, and the difference it makes must be a difference from what would have happened
without it”.

The “interventionis” definition: T causes Y iff changing T leads to a change in Y , keeping everything
else constant.
The causal effect is the magnitude by which Y is changed by a unit change in T .

Keeping everything else constant: parallel, counterfactual reality.
Causal questions are weird!



The Three Layer Causal Hierarchy

Level Typical Activity Typical Question Examples
1. Association
P(y |x )

Seeing What is? What does a symptom tell me about
a disease?
What does a survey tell us about
the election results?

2. Intervention
P(y |do(x), z )

Doing,
Intervening

What if?
What if I do X?

What if I take aspirin, will my
headache be cured?
What if we ban cigarettes?

3. Counterfactual
P(yx |x′, y′ )

Imagining,
Retrospection

Why?
Was it X that caused Y?
What if I had acted
differently?

Was it the aspirin that stopped my
headache?
What I had not been smoking the
past 2 years?

Pearl J. Theoretical Impediments to Machine Learning with Seven Sparks from the Causal Revolution.
arXiv:1801.04016v1, 2018



Potential outcomes framework

Y1i — the outcome for unit i that would be observed in condition T = 1 (“treatment“),
Y0i — the outcome that would be observed, all else held constant, in condition T = 0 (“control”).
Causal effect of treatment on Y :

τi = Y1i − Y0i

.

Fundamental problem of causal inference: only one outcome is observed for each unit
⇒ causal effect cannot be measured.
Solution — estimate something else, e.g. average causal effect:

ATE = E(τi) = E (Y1i − Y0i) = E(Y1i)− E(Y0i)

(population) average treatment effect.



Randomized experiment
I A large population of experimental units
I Treatment T with support {0, 1}
I Each unit in i ∈ U has potential outcomes Y0i, Y1i

I Population average treatment effect:

ATE = E (Y1 − Y0)

I Random sample of size N from the population
I Sample average treatment effect — an estimate of ATE:

SATE =
1

N

N∑
i=1

(Y1i − Y0i)

I Randomly assign N1 units to treatment (Ti = 1) and N0 = N −N1 to control (Ti = 0)
I Observe Yi = TiY1i + (1− Ti)Y0i

I Because treatment assignment is random,

ŜATE =
1

N1

∑
i : Ti=1

Yi −
1

N0

∑
j : Tj=1

Yj = Ȳ1 − Ȳ0

is an unbiased estimate of SATE (and ATE)



Randomized experiment

Experiment is not always feasible:
I thunderstorms → forest fires — we cannot manipulate the treatment
I TV violence → cruelty — treatment is difficult to fix, response is difficult to measure in a lab
I alcohol consumption → performance in school — unethical

In such cases we have to resort to observational data.



Cholesterol and exercise



Cholesterol and exercise



Cholesterol and exercise



Cholesterol and exercise



Simpson’s paradox



Simpson’s paradox

Example 1:

Σ Recovered Not recovered Recovery
rate

Drug 273 77 78% Placebo is 5%
Placebo 289 61 83% more effective

Men Recovered Not recovered Recovery
rate

Drug 81 6 93% Drug is 5%
Placebo 234 36 87% more effective

Women Recovered Not recovered Recovery
rate

Drug 192 71 73% Drug is 4%
Placebo 55 25 69% more effective



Simpson’s paradox

Does the drug increases chance to recover compared to placebo?

Conclusion 1: drug is 5% worse than placebo.

ÂTE = P(recovery |drug )−P(recovery |placebo )

Conclusion 2: drug is 4.51% better than placebo (assuming patients are 49% women).

ÂTE =
∑
sexi

(P(recovery |drug, sexi )−P(recovery |placebo, sexi ))P(sexi)

Which one is correct?
What would happen if we intervene?



Simpson’s paradox

Example 2:

Σ Recovered Not recovered Recovery
rate

Drug 273 77 78% Placebo is 5%
Placebo 289 61 83% more effective

Low pressure by the
end of treatment

Recovered Not recovered Recovery
rate

Drug 81 6 93% Drug is 5%
Placebo 234 36 87% more effective

High pressure by the
end of treatment

Recovered Not recovered Recovery
rate

Drug 192 71 73% Drug is 4%
Placebo 55 25 69% more effective



Simpson’s paradox

In example 1, conclusion 2 is correct, in example 2 — conclusion 1.

Everything depends on the directions of causal relationships between a feature determining subgroups
and the rest of features.



Causal graphs

Causal relationships could be represented on graphs where variables are vertices and directed edges are
causal relationships.

Edges — direct causes, directed paths — indirect causes.
Graph encodes all causal assumptions:
I occupation does affect outcome Y
I age does not affect stress
I stress does not affect occupation
I treatment does not affect stress
I ...



Elements of causal graph
A→ B → C — chain

B — mediator

Example:
I A — school budget
I B — average score of graduates
I C — proportion of students admitted to college

Properties:

1. A and B, B and C are dependent:
∃a, b : P(B = b |A = a ) 6= P(B = b)
∃b, c : P(C = c |B = b ) 6= P(C = c)

2. C and A are likely dependent

3. C ⊥ A|B conditionally independent: ∀a, b, c

P(C = c |A = a,B = b ) = P(C = c |B = b )

(if B is fixed, then A and C are independent)



Elements of causal graph

B ← A→ C — fork
A — confounder

Example:
I A — ice cream sales
I B — average daily temperature
I C — number of violent crimes per day

Properties:

1. A and B, A and C are dependent

2. B and C are likely dependent

3. B ⊥ B|A are conditionally independent



Elements of causal graph

B → A← C — collider
A — also collider

Example (Monty Hall problem):
I A — choice of the game host
I B — choice of the player
I C — position of the prize

Properties:

1. B and A, C and A are dependent

2. B and C are independent

3. B 6⊥ C|A conditionally dependent



Intervention

We need to use observational data to estimate the effect of intervention: what would happen with Y
if we set the value of T equal to t?
Notation: do(T = t).

Potential outcomes are outcomes under intervention:

Y1i = Yi |do(T = 1) , Y0i = Yi |do(T = 0)

Hence, causal effect could be represented through intervention:

ATE = E(Y1i)− E(Y0i) = E (Yi |do(T = 1))− E (Yi |do(T = 0))



Intervention

X (gender)

T (treatment) Y (outcome)

Drug effect in terms of interventions:

ATE =P(Y = recovery |do (T = drug) )−
−P(Y = recovery |do (T = placebo) ) .



Graph surgery

Graph surgery — removal of all edges directed into treatment variable X.

Example 1, original graph G:
X (gender)

T (treatment) Y (outcome)

Modified graph Gm:
X (gender)

T (treatment) Y (outcome)

P(Y = y |do (X = x) ) = Pm(Y = y|X = x)



Graph surgery

In the modified graph:

Pm(X = x) = P(X = x) ,

Pm(Y = y|T = t,X = x) = P(Y = y |T = t,X = x ) ,

because the edges pointing to T and Y did not change ⇒

P(Y = y |do (T = t) ) = Pm(Y = y|T = t) =

=
∑
z

Pm(Y = y|T = t,X = x)Pm(X = x) =

=
∑
z

P(Y = y |T = t,X = x )P(X = x) .



Graph surgery

In example 1:
P(Y = recovery |do (T = drug) ) = 0.832,
P(Y = recovery |do (T = placebo) ) = 0.7818
⇒ ATE = 0.05.

In example 2 G = Gm:
X (pressure)

T (treatment) Y (outcome)

Therefore,
P(Y = y |do (T = t) ) = Pm(Y = y|T = t) = P(Y = y |T = t )
P(Y = recovery |do (T = drug) ) = 0.78,
P(Y = recovery |do (T = placebo) ) = 0.83
⇒ ATE = −0.05.



Adjustment formula

Adjustment formula allows to calculate the effect of an intervention by conditioning on the vertices
of X:

P(Y = y |do (T = t) ) =
∑
x

P(Y = y |T = t,X = x )P(X = x) .

What is X?

Causal effect formula:

P(Y = y |do (T = t) ) =
∑
x

P(Y = y |T = t, PA = x )P(PA = x) ,

where PA — parents of T .



Assumptions of conditioning on X

Ignorability (no unmeasured confounders)
Under random experiments, T ⊥ X for both observed and unobserved covariates.
But conditioning and related techniques can only construct T ⊥ X for observed covariates.
So assume that after conditioning on observed covariates, any unmeasured covariates are irrelevant:

P(YT |X ) = P(YT |X,T )

Stable Unit Treatment Value (SUTVA) (no spillover)
The effect of treatment on an individual is independent of whether or not others are treated:

P(Yi |do(Ti, Tj) ) = P(Yi |do(Ti) )

Overlap (common support)
There should be overlap on observed covariates between treated and untreated individuals:

0 < P(T = 1 |X = x ) < 1



Unknown parents

S (socioeconomical status)

T (treatment)

W (weight)

Y (outcome)

Socioeconomical status — unobservable variable; how can we estimate the effect of intervention on T?



More definitions

Path — a sequence of vertices where each vertex is connected to the next one with an edge.
Directed path — a path where all edges have the same direction.
Backdoor path from A to B starts with A← and ends with → B.

A path P is blocked by variable X, if:

1. P contains A→ B → C, A← B → C, B ∈ X
2. P contains A→ B ← C, B /∈ X and all the descendants of B /∈ X



Backdoor criterion

For an ordered pair of vertices (A,B) in acyclic graph G a set of vertices X satisfies backdoor
criterion, if it:
I X does not contain the descendants of A
I X blocks all backdoor paths from A to B

If X satisfies backdoor criterion for (T, Y ), then

P(Y = y |do (T = t) ) =
∑
x

P(Y = y |T = t,X = x )P(X = x)

(backdoor formula).



Backdoor criterion

To calculate less conditional probabilities, backdoor formula could be simplified:

P(Y = y |do (T = t) ) =
∑
x

P(Y = y |T = t,X = x )P(X = x) =

=
∑
x

P(Y = y, T = t,X = x)

P(T = t |X = x )

This way
I the method is called inverse probability weighting
I denominator ei = P(T = t |X = x ) — propensity score.



Biking vs Cholecterol



Regression

Model Y as a function of T and X:

Y = β0 + β1X1 + . . . βkXk + αT + ε,

i.e., Cholesterol = β0 + β1 ·Age+ α · Excercise+ ε.
α̂ — an estimate of the average effect of changing T from 0 to 1, if among X1, . . . , Xk there are:
I all the parents of T , or a set of variables that satisfies backdoor criterion for (T, Y )

I no colliders of T and Y

Also, the model must be true.



Matching



Matching

I Paired individuals provide the counterfactual estimate for each other
I Reduces sample size
I Could be approximate:

I on distances in X space
I on propensity scores ei = P(T = 1 |X = x )



Stratification



Stratification

I Many:many matching
I Stratum sizes — bias-variance tradoeff
I You can stratify on binned propensity scores! But they must be well-calibrated.



Weighting

Propensity scores could be used as weights:

ÂTE =
1

N1

∑
i : Ti=1

wiYi −
1

N0

∑
j : Tj=1

wjYj ,

wi =
T

ei
+

1− T
1− ei

Inverse Probability of Treatment Weighting (IPTW).

I High variance when ei close to 0 or 1 (could be stabilized heuristically)
I Assumes propensity score model is correctly specified



Doubly robust

Combines models ŶT=t and propensity scores ê:

DR1 =

{
Y
ê
− ŶT=1(1−ê)

ê
, T = 1,

ŶT=1, T = 0;

DR0 =

{
ŶT=0, T = 1,
Y
ˆ1−e
− ŶT=1ê

1−ê
, T = 0

Causal effect on T — difference between mean DR1 and DR0.

I Works if at least one of two is correctly specified
I But if both propensity score or regression are slightly incorrect, may become very biased



Causal analysis simple checks

I Adding random covariates should not change the analysis
I AA-test: randomizing the treatment should turn causal effect into 0
I Subampling should not change the conclusions
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