Adversarial optimization

Maxim Borisyak

National Research University Higher School of Economics (HSE)

Adversarial

Example

Consider a task of tuning unknown parameters of the PYTHIA event generator to a particular set of data.

An approach

Event generator tuning using Bayesian optimization

Philip Ilten, Mike Williams, and Yunjie Yang

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139

- · make two histogram for each parameter: $data_i$ and MC_i ;
- use Bayesian Optimization on the objective function:

$$\chi^2 = \sum_{i=1}^{n_{bins}} \frac{(\text{data}_i - \text{MC}_i)^2}{\sigma_{\text{data},i}^2 + \sigma_{\text{MC},i}^2}$$

3

Adversarial

Notation:

- parameters θ of the PYTHIA define a distribution $p_{\theta} = p(\cdot \mid \theta)$ on events;
- $p_{\rm data}$: real distribution;
- consider both distributions as intractable and can only be sampled from.

Adversarial objective can be used instead *:

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} \operatorname{Jensen-Shannon}(p_{\theta}, p_{\text{data}}) = \underset{\theta}{\operatorname{arg\,max\,min}} \left[\operatorname{cross-entropy}_f(p_{\theta}, p_{\text{data}}) \right]$$

* Any other statistical distance (e.g. Wasserstein) can be also used.

Why adversarial objective

· sufficiently powerful discriminator does not create 'fake' minima:

Jensen-Shannon
$$(p_{\theta}, p_{\text{data}}) = 0 \iff p_{\theta} = p_{\text{data}}$$

- prior knowledge can be expressed via the choice of discriminator, e.g.:
 - architecture and regularization for neural networks;
 - feature engineering for tree-based algorithms.

Optimization

Black-box

Differences from GAN:

- · non-differentiable generator;
- thus, black-box optimization;
- hence, discriminator can be non-differentiable as well (e.g. tree-based).

Bayesian Optimization example

- 1: initialize Bayesian Optimization
- 2: while patience is not ran out do
- 3: $\theta \leftarrow \text{askBO}()$
- 4: $X_{\text{train}}^{\theta}, X_{\text{test}}^{\theta} \leftarrow \text{sample}(\theta)$
- 5: $f \leftarrow \text{train discriminator on } X_{\text{train}}^{\theta} \text{ and } X_{\text{train}}^{\text{real}}$
- 6: $\mathcal{L} \leftarrow \frac{1}{2 \cdot m} \left[\sum_{i=1}^{m} \log f(X_{\text{test}}^{\theta, i}) + \sum_{i=1}^{m} \log(1 f(X_{\text{test}}^{\text{real}, i})) \right]$
- 7: $\operatorname{tellBO}(\theta, \log 2 \mathcal{L})$
- 8: end while

Adversarial Variational Optimization

Motivation

Adversarial Variational Optimization of Non-Differentiable Simulators

Gilles Louppe

G.LOUPPE@ULIEGE.BE

University of Liège, Belgium

Kvle Cranmer

KYLE.CRANMER@NYU.EDU

New York University, USA

Exact match between generator and real data may not exist:

• search for solution as mixture of generators defined by $q(\theta \mid \psi)$:

$$x \sim p(x \mid \theta), \ \theta \sim q(\theta \mid \psi)$$

or

$$x \sim \phi(x \mid \psi)$$

The formal problem statement:

$$\mathcal{L} = \frac{1}{2} \left[\underset{x \sim \phi(x|\psi)}{\mathbb{E}} \log f(X) + \underset{X \sim p_{\text{real}}}{\mathbb{E}} \log(1 - f(X)) \right];$$

$$\psi^* = \underset{\psi}{\operatorname{arg max min }} \mathcal{L};$$

- x is now sampled from a compound distribution;
- optimization is done by distribution parameters ψ (and not by generator parameters θ).

Gradient estimation

$$\nabla_{\psi} \mathcal{L} = \nabla_{\psi} \frac{1}{2} \left[\underset{x \sim \phi(x|\psi)}{\mathbb{E}} \log f(X) \right] =$$

$$\frac{1}{2} \nabla_{\psi} \int_{\theta} \int_{x} d\theta \, dx \, p(x \mid \theta) \, q(\theta \mid \psi) \log f(X) =$$

$$\frac{1}{2} \int_{\theta} \int_{x} d\theta \, dx \, p(x \mid \theta) \nabla_{\psi} \, q(\theta \mid \psi) \log f(X) =$$

$$\frac{1}{2} \int_{\theta} \int_{x} d\theta \, dx \, p(x \mid \theta) \, q(\theta \mid \psi) \nabla_{\psi} \log q(\theta \mid \psi) \log f(X) =$$

$$\frac{1}{2} \int_{x \sim \phi(x|\psi)} \log f(X) \cdot \nabla_{\psi} \log q(\theta \mid \psi)$$

Variational

The math works almost exactly as in Variational Optimization:

- discriminator is trained to distinguish samples from $\phi(\cdot \mid \psi)$ not from individual generators;
- conventional VO applied to adversarial objective would converge to the single best generator.

Adversarial Variational Optimization

- 1: initialize $q(\cdot \mid \psi)$
- 2: while not bored do
- 3: sample X_{train} from $\phi(x \mid \psi)$
- 4: $f \leftarrow \text{train discriminator on } X_{\text{train}} \text{ and } X_{\text{train}}^{\text{real}}$
- 5: $X_{\text{test}} \leftarrow \text{sample from } \phi(x \mid \psi)$
- 6: $\nabla_{\psi} \mathcal{L} \leftarrow \frac{1}{m} \sum_{i=1}^{m} \log f(X_{\text{test}}^{i}) \cdot \nabla_{\psi} \log q(\theta \mid \psi)$
- 7: $\theta \leftarrow \operatorname{Adam}(\nabla_{\psi} \mathcal{L})$
- 8: end while

Summary

Summary

- · adversarial objective can be utilized for non-differentiable generators;
 - · which allows to tune MC models to real data;
- it is possible to find a solution as a mixture of generators.

References

- Ilten, P., Williams, M. and Yang, Y., 2017. Event generator tuning using Bayesian optimization. Journal of Instrumentation, 12(04), p.P04028.
- Louppe, G. and Cranmer, K., 2017. Adversarial Variational Optimization of Non-Differentiable Simulators. arXiv preprint arXiv:1707.07113.