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Adversarial



Example

Consider a task of tuning unknown parameters of the PYTHIA event
generator to a particular set of data.
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An approach

• make two histogram for each parameter: datai and MCi;
• use Bayesian Optimization on the objective function:

χ2 =

nbins∑
i=1

(datai −MCi)2

σ2
data,i + σ2

MC,i
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Adversarial

Notation:

• parameters θ of the PYTHIA define a distribution pθ = p(· | θ) on events;
• pdata: real distribution;
• consider both distributions as intractable and can only be sampled from.

Adversarial objective can be used instead ∗:

θ∗ = arg min
θ

Jensen-Shannon(pθ, pdata) = arg max
θ

min
f

[
cross-entropyf(pθ, pdata)

]
∗ Any other statistical distance (e.g. Wasserstein) can be also used.
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Why adversarial objective

• sufficiently powerful discriminator does not create ’fake’ minima:

Jensen-Shannon(pθ, pdata) = 0 ⇐⇒ pθ = pdata

• prior knowledge can be expressed via the choice of discriminator, e.g.:
• architecture and regularization for neural networks;
• feature engineering for tree-based algorithms.
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Optimization



Black-box

Differences from GAN:

• non-differentiable generator;
• thus, black-box optimization;
• hence, discriminator can be non-differentiable as well (e.g. tree-based).
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Bayesian Optimization example

1: initialize Bayesian Optimization

2: while patience is not ran out do

3: θ ← askBO()

4: Xθ
train,Xθ

test ← sample(θ)

5: f← train discriminator on Xθ
train and Xreal

train

6: L ← 1
2·m

[∑m
i=1 log f(Xθ,i

test) +
∑m

i=1 log(1− f(Xreal,i
test ))

]
7: tellBO(θ, log 2− L)

8: end while
7



Adversarial Variational Optimization



Motivation

Exact match between generator and real data may not exist:

• search for solution as mixture of generators defined by q(θ | ψ):

x ∼ p(x | θ), θ ∼ q(θ | ψ)

or
x ∼ ϕ(x | ψ)
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Variational

The formal problem statement:

L =
1
2

[
E

x∼ϕ(x|ψ)
log f(X) + E

X∼preal
log(1− f(X))

]
;

ψ∗ = arg max
ψ

min
f
L;

• x is now sampled from a compound distribution;
• optimization is done by distribution parameters ψ (and not by generator
parameters θ).
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Gradient estimation

∇ψL = ∇ψ
1
2

[
E

x∼ϕ(x|ψ)
log f(X)

]
=

1
2∇ψ

∫
θ

∫
x

dθdx p(x | θ)q(θ | ψ) log f(X) =

1
2

∫
θ

∫
x

dθdx p(x | θ)∇ψq(θ | ψ) log f(X) =

1
2

∫
θ

∫
x

dθdx p(x | θ)q(θ | ψ)∇ψ log q(θ | ψ) log f(X) =

1
2 E

x∼ϕ(x|ψ)
log f(X) · ∇ψ log q(θ | ψ)
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Variational

The math works almost exactly as in Variational Optimization:

• discriminator is trained to distinguish samples from ϕ(· | ψ) not from
individual generators;

• conventional VO applied to adversarial objective would converge to the
single best generator.
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Adversarial Variational Optimization

1: initialize q(· | ψ)

2: while not bored do

3: sample Xtrain from ϕ(x | ψ)

4: f← train discriminator on Xtrain and Xreal
train

5: Xtest ← sample from ϕ(x | ψ)

6: ∇ψL ← 1
m
∑m

i=1 log f(Xi
test) · ∇ψ log q(θ | ψ)

7: θ ← Adam(∇ψL)

8: end while
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Summary



Summary

• adversarial objective can be utilized for non-differentiable generators;
• which allows to tune MC models to real data;

• it is possible to find a solution as a mixture of generators.
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