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Black-box optimization



Black-box

Black-box optimization⇐⇒ no gradient information.
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Examples: car aerodynamics

Design optimization:
• expensive computations;
• even more expensive gradient:

• and, possibly, unstable.

Image source: spectre-design.com
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Examples: SHiP shield optimization

background = E
event

I [muon passed > 0 | event]→ min

• expensive computations:
• each evaulation involves
thousands of event simulations;

• only estimates are available:
• function might have a nice
gradient;

• no MC estimation have a usefull
gradient.

Image source: Oliver Lantwin. Bayesian optimisation

of the SHiP active muon shield. CHEP 2018.
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Examples: chess bot

win rate = E
opponent

I [win | opponent]→ max

• might not be expensive;
• only estimates are available:

• function might have a nice
gradient;

• no MC estimation have a usefull
gradient.

Image source: Wikimedia Commons.
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Optimization methods categorization

black-box (zeroth order):
• Bayesian Optimization;
• Variational Optimization;
• evolutionary methods;
• Nelder–Mead, Powell, ...;

first order methods:
• SGD;
• adam;
• momentum;

quasi-Newton:
• BFGS;

second-order:
• Netwon’s method;

* Lists of methods are by no means exhaustive.
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Bayesian Optimization



Surrogate models

Let’s assume we have a function f(x):

• expensive to evaluate;
• no gradient information.

Example: detector optimization.

Bayesian optimization is primarely developed for computationally heavy objectives. Usually, gradient

information for such target functions is absent as well. Nevertheless, there are some Bayesian optimization

methods that make use of gradient information.
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Toy example

f(x) = 2
(

x− 1
2

)2
− 1

4 ;

x ∈ [0, 1].
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Toy example
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Surrogate model

• cover the whole parameter space (i.e. grid):
• a.k.a experiment plan;

• evaluate target function in these points;
• introduce a regression model:

• a.k.a. surrogate model;
• preferably differentiable;

• fit model to these points;
• find minimum of the surrogate with a gradient method.

Toy example:

surrogate(x) = w0 + w1 · x + w2 · x2 + · · ·+ w7 · x7
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Surrogate model
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Surrogate model
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Discussion

• requires a lot of target function evaluations;
• to ensure surrogate model is not overfitted;

• most of the points does not provide information about location of the
minimum.

Can we update the surrogate model sequentially?
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Follow surrogate minimim

1. fit surrogate to observed values;
2. locate minimum of the surrogate;
3. evaluate target function in the predicted minimum;
4. repeat.

Sounds good, does not work!
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Does not follow surrogate minimim
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Does not follow surrogate minimim

16



Multiple fits
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Multiple fits
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Multiple fits (with noise)
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Multiple fits (with noise)
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Discussion

Surrogate models trained on few datapoints:

• the model overfits:
• exist multiple models that fit data perfectly;

• regions with no points have unreliable predictions;
• multiple initial guesses result in an hardly predictable prior over model
parameters.
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Preliminaries: Maximum Likelihood estimates

Maximum Likelihood estimate θML for parameters θ of a distribution family
P(x | θ) given data X = {x1, x2, . . . ,n }:

θML = arg max
θ

L(θ,X);

L(θ,X) = P(x1, x2, . . . , xn | θ);

• L(θ,X) - likelihood function.
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Examples: mean of a normal distribution

Mean of a normally distributed variable:

xi ∼ N (µ, σ2)

µML = arg max
µ

L(θ,X) = arg max
µ

N∏
i=1

1√
2πσ2

exp
[
− 1

2σ2 (xi − µ)2
]
=

arg max
µ

log
{ N∏

i=1

1√
2πσ2

exp
[
− 1

2σ2 (xi − µ)2
]}

= arg min
µ

N∑
i=1

(xi − µ)2 =

1
N

N∑
i=1

xi
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Examples: regression

• y = f(x) + ε - observations;
• ε ∼ N (0, σ2

ε) - noise in observations;
• y = g(x, θ) - regression model with parameters θ.

θML = arg max
θ

L(θ,X) = arg max
θ

N∏
i=1

1√
2πσ2

exp
[
− 1

2σ2 (g(xi, θ)− yi)
2
]
=

arg max
θ

log
{ N∏

i=1

1√
2πσ2

exp
[
− 1

2σ2 (g(xi, θ)− yi)
2
]}

=

arg min
θ

N∑
i=1

(g(xi, θ)− yi)
2 = arg min

θ
MSE(θ,X, y)
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Bayesian inference and uncertainty

Bayesian inference recovers the whole posterior distribution.

• prior over surrogate model parameters P(θ);
• data model: P(y | x, θ);
• posterior:

P(θ | X, y) = P(y | X, θ)P(θ)
P(y | X)

=
P(y | X, θ)P(θ)∫

θ P(y | X, θ)P(θ)dθ ∝ P(y | X, θ)P(θ)
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Maximum A Posteriori

• Baysian inference is not always computationally possible;
• instead Maximum A Posteriori or MAP estimation is often used:

θMAP = arg max
θ

P(θ | X, y) = arg max
θ

P(y | X, θ)P(θ)

• Maximum Likelihood is a MAP estimate with a uniform prior P(θ) = const:

θMAP = arg max
θ

P(y | X, θ) · const = θML
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Examples: regression with prior

• y = f(x) + ε - observations;
• ε ∼ N (0, σ2

ε) - noise in observations;
• y = g(x, θ) - regression model with parameters θ;
• P(θ) = α exp (−2α|θ|) - prior over model parameters.

θMAP = arg max
θ

L(θ,X)P(θ) = · · · =

arg min
θ

N∑
i=1

(g(xi, θ)− yi)
2 + 2α|θ| = arg min

θ
MSE(θ,X, y) + C · |θ|

• structural risk minimization is a MAP estimation.
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Bayesian inference and uncertainty, toy example

surrogate(x) = w0 + w1 · x + w2x2 + · · ·+ w7 · x7;

y = f(x) + ε;

ε ∼ N (0, σ2
ε).

• prior: P(θ = (w0, . . . ,w7)) = N (0,Σw), Σw = diag(σw, . . . , σw);
• data model:

P(y | x, θ) ∝ exp
[
− 1

2σ2
ε

(surrogate(x)− y)2
]
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Bayesian inference and uncertainty, toy example

P(θ | X, y) =
∏

i

1√
(2πσ2

ε)
exp

[
−(yi − surrogateθ(xi))

2

2σ2
ε

]
·
∏

j

1√
(2πσ2

w)
exp

[
−

w2
j

2σ2
w

]

− log P(θ | X, y) =∑
i

[
const + (yi − surrogateθ(xi))

2

2σ2
ε

]
+
∑

j

[
const +

w2
j

2σ2
w

]
∝

const +
∑

i
(yi − surrogateθ(xi))

2 + C · ∥w∥2
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Bayesian inference and uncertainty

Transparency is proportional to the posterior of the model. 30



Bayesian inference and uncertainty
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Bayesian inference and uncertainty

Naive Bayesian inference:

• sample θi from the prior P(θ);
• evaluate P(θi | X, y);
• compute P(y = t | X) = 1∑

i P(θi|X,y)
∑

i P(y = t | X, θi)P(θi | X, y)
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The next step

How the next point for evaluation should be chosen?

• exploration:
• decrease uncertanty of the estimations;

• exploitation:
• using current estimates to locate the minimum;

• acqusition function:

candidate = arg max
x

acqusition(x)

Acqusition function can be maximized by any standard optimization
procedure, i.e. GD if differentiable.
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Acqusition

• probability of improvement:

PI(x) = P(y > y∗ | x)

• expected improvement:

EI(x) = E [I[y > y∗] | x]

• upper confidence bound:

LCB(x) = E [y | x]− κ ·Var [y | x]
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The next step
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BO cycle

1: given X0, y0 — initial dataset;

2: for t := 1, . . . do

3: compute posterior: Pt = P(θ | Xt−1, yt−1)

4: compute candidate: x′ = arg maxx E
[
I[y > y∗] | x,Pt]

5: evaluate: ft = f(x′);

6: Xt = [Xt−1, x′]

7: yt = [Xt−1, ft]

8: end for
36



BO cycle

bo = BO(
acqusition='EI',
regressor=GaussianProcess(kernel=...)

)

for i in range(...):
candidate = bo.ask()
value = target_function(candidate)
bo.tell(candidate, value)
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The problem with naive Bayesian Inference

• the prior is usually selected to be wide-spread:
• to ensure the actual dependency has relative high prior probability;

• most of the sampled models have low posterior probability:
• wasting a lot of computational power.
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Linear Models

• fixed basis functions: ϕ(x) ∈ Rm;
• vector of parameters: w ∈ Rm:

y(x) = w · ϕ(x) + ε;

ε ∼ N (0, σ2
ε);

w ∼ N (0,Σw);

For simplicity the constant term is omitted in the derivations as it can be modeled by introducing a constant

basis function: ϕ0(x) = 1. Nevertheless, additional care should be taken with priors for corresponding

coefficient w0 .
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Linear models

Theorem 1
If:

• prior P(w) of parameters w of a linear model is normally distributed,
• noise is Gaussian with constant variance,

then posterior P(w | X, y) is also normally distributed.
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Linear models

Assume values y ∈ Rn were observed in points X (with Φ = ϕ(X)):

P(w | y,X) ∝ P(y | w,X)P(w) ∝

exp
[
− 1

2σ2
ε

(y− ΦTw)T(y− ΦTw)
]
· exp

[
−1

2wTΣ−1
w w

]
=

exp
[
−1

2(w− w∗)TAw(w− w∗)

]
where:

• Aw = 1
σ2
ε
ΦΦT +Σ−1

w ;
• w∗ = 1

σ2
ε
A−1

w Φy.
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Linear models

Theorem 2
With normally distributed posterior P(w | X, y) joint distribution
P(y1, y2, . . . , yn | X, y, x1, . . . , xn) of any finite set of (y1, . . . , yn) is normal.

42



Linear models

To make prediction y′ in point x′:

P(y′ | y,X, x′) =
∫

P(y′ | w, x′)P(w | X, y) = N
(

1
σ2
ε

ϕ′TA−1Φy, ϕ′TA−1ϕ′
)

• posterior distribution of model parameters is Gaussian;
• (posterior) joint distribution of any number of y(x) is a Gaussian distribution.
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Kernels

P(y′ | y,X, x′) = N

 1
σ2
ε

ϕ′TA−1Φ︸ ︷︷ ︸
dot products

y, ϕ′TA−1ϕ′︸ ︷︷ ︸
dot product



• basis function ϕ(x) occurs only in scalar product;
• kernel trick can be used:

ϕT(x)Σwϕ(x′)→ k(x, x′)
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Gaussian process

In general Gaussian process f(x) is defined by:

• m(x) = E f(x) - mean function;
• k(x, x′) = E (f(x)−m(x))(f(x′)−m(x′)).

Interpretation:

• a set of random variables y(x);
• each y(x) is normally distributed;
• each subset {y(x1), y(x2), . . . , y(xm)} has normal joint distribution:

• with covariance matrix defined be the kernel cov(y(x1), y(x2)) = k(x1, x2).
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Gaussian process

Bayesian linear model:

• m(x) = Ew · ϕ(x) = ϕ(x)Ew = 0;
• k(x, x′) = ϕT(x)E

[
wwT]ϕ(x′) = ϕT(x)Σwϕ(x′).

Usually:

• m(x) ≡ 0;
• k(x, x′) = exp(−1

2∥x− x′∥2) - RBF kernel;
• k(x, x′) = crazy expression - Matern kernel;
• k(x, x′) = I [x = x′] - white kernel (equivalent to Gaussian noise).

Every proper kernel corresponds to a set basis funstions, i.e. every kernel defines a scalar product
in a corresponding Reproducing kernel Hilbert space or RKHS. Thus, Gaussian processes defined by
kernels are equivalent to Bayesian liner regressions in corresponding RKHS.
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Predictions with kernel

• dataset:

X = [x1, x2, . . . , xn] ;

y = [y1, y2, . . . , yn]

• points to evaluate: X∗, y∗
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Predictions with kernel

[
y
y′

]
∼ N

(
0,
[

K(X,X) K(X,X′)

K(X′,X) K(X′,X′)

])

• where:

K(X,X) =

k(x1, x1) k(x1, x2) . . . k(x1, xn)
...

... . . . ...
k(xn, x1) k(xn, x2) . . . k(xn, xn)


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Predictions with kernel

y′ | X, y,X′ ∼ N (µ′, σ′);

µ′ = K(X′,X)
[
K(X,X) + σ2

ε

]−1 y;

σ′ = K(X′,X′)−K(X′,X)
[
K(X,X) + σ2

ε

]−1 K(X,X′).
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Examples
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Examples
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Examples
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Examples
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Examples
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Hyper-parameter optimization for GP

How kernel parameters should be chosen?

• prior knowledge about the problem:
• e.g. noise level of the target function;

• Maximum Likelihood fit:
• setting acceptable ranges for hyper-parameters;
• employing Gradient Descent;

Yes, it is hyper-parameter optimization for the model that optimizes
hyper-parameters of another model.
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Gaussian Process

• full Baysian inference:
• guaranteed convergence with a proper kernel and a proper acquisition
function;

• computational compexity scales cubically with the number of training points.

Usage
Low-mid (≤ 20) dimensionality problems with few training points (≤ 100).
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Alternatives to GP

Random Forest:

• uncertanty estimation in the leaves:
• much faster to fit:

• good for large datasets (100+ points);

• non-differentiable:
• much slower to find acqusition minimum.

• not a true Bayesian inference:
• but quite close due to Random Forest properties.

Usage
Low dimensionality problems with a lot of training points (100+).
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Alternatives to GP

A variant of Neural Networks for BO:

• a regression Neural Net is trained to fit the data (MAP estimation);
• the last layer is replaced by a Bayesian linear regression (no basis
expansion);

• dimensionality reduction allows to handle large dimesionality problems.
• partial Bayesian inference might backfire.

Usage
You are lucky and the problem is high dimensional with internal structure, a lot
of training points (100+).

Snoek J et al. Scalable bayesian optimization using deep neural networks.
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Variational Optimization



Variational bound

Variational Optimization replaces problem:

f(θ)→θ min;

with:

J(ψ) = E
θ∼P(·|ψ)

f(θ)→ψ min

where:

• J(ψ) - variational bound;
• P(· | ψ) - search distribution.

This variational bound is not the only one, nevertheless, it is the most common one in Varitional
Optimization. 59



Properties

J(ψ) = E
θ∼P(· |ψ)

f(θ)→ψ min

• upper bound:
∀ψ : J(ψ) ≥ min f(θ);

• if P(· | ψ) is allowed to (nearly) collapse into delta function, then

P(· | ψ∗) ≈ δ(θ∗).
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Gradient of the variational bound

∂

∂ψ
J(ψ) = ∂

∂ψ
E

θ∼P(·|ψ)
f(θ) = ∂

∂ψ

∫
θ

dθ f(θ)P(θ | ψ) =

∫
θ

dθ f(θ) ∂

∂ψ
P(θ | ψ) =

∫
θ

dθ f(θ) P(θ | ψ) ∂

∂ψ
log P(θ | ψ) =

E
θ∼P(·|ψ)

f(θ) ∂
∂ψ

log P(θ | ψ)

61



Gradient of the variational bound

∇ψJ(ψ) = E
θ∼P(·|ψ)

f(θ) ∇ψ log P(θ | ψ)

∇ψJ(ψ) does not depend on ∇θf(θ)
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VO for Machine Learning loss functions

Typical loss function:

f(θ) = E
x

l(θ, x);

∇ψJ(ψ) = E
θ∼P(·|ψ)

E
x

l(θ, x) ∇ψ log P(θ | ψ);

• batch estimation of ∇ψJ(ψ) is unbiased;
• can be used with SGD.
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Gradient of the variational bound
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Gradient of the variational bound
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SGD-VO

1: initialize P(· | ψ)

2: while not converged do

3: sample θ from P(· | ψ);

4: ∇ψJ(ψ)← f(θ)∇ψ log P(θ | ψ);

5: ψ ← ψ − γ∇ψJ(ψ);

6: end while
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Variational Optimization

• allows usage of stochastic gradient methods for black-box problems:
• VO is much slower in contrast to using analytical gradient;

• search distribution is chosen to be simple:
• e.g. normal distribution;

Usage
Low dimensionality problems with a cheap target function or cheap unbiased
estimates.
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Summary



Summary

Bayesian Optimization:

• efficient for heavy objectives;
• wide model selection:

• precise Gaussian Processes;
• approximations for ensamblies and Neural Networks.

Variational Optimization:

• cheap updates;
• efficient for cheap objectives.
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Backup



Basis expansion

x ∈ Rn;

ϕ(x) = {ϕ1(x), ϕ2(x), . . . , ϕm(x)};
f(x) = w · ϕ(x).

• f(x) - is still a linear model (w.r.t w);
• ϕ(x) is called feature map;
• can produce a rich models, e.g.:

• polynomials: ϕk(x) = xk;
• Fourier series: ϕk(x) = cos(kx).

• size of the basis can grows very quickly with x dimensionality:
• O(n2) for polynomials;
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Basis expansion
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