Machine Learning for
Particle Imaging Detectors Iin
Experimental Neutrino Physics

Kazuhiro Terao
SLAC National Accelerator Lab.
MLHEP @ DESY (July. 11th 2019)

ENERGY



Outline

1. Neutrino detectors

2. Machine Learning & Computer Vision Applications
3. ML-based Neutrino Data Reconstruction Chain

4. Summary

9} ENERGY



T . oo 2R SN
i mMEE L
A=

ez Defectors_
| for
Neutl“l’no Oscillation

Experlments

".nlng & Computer"V1§10, A '»-;;

‘ i i

1A T’PC Da’ta Reconstru, ~10—"




Machine Learning & Computer Vision in Neutrino Physics
Neutrino Detectors: What’s Important
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Neutrino Oscillation Measurement

Use a neutrino source (flavour X), measure flavour Y at the detector
What’s important?

Three important detector features for oscillation measurement
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Machine Learning & Computer Vision in Neutrino Physics
Neutrino Detectors: Early Days
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0.4 ton, 100 PMTs by Reines & Cowan (Nobel Prize 1995)

(1956) First neutrino detection
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NOVA - FNAL E929
Run: 18975/ 43

Event: 628855 / SNEWSBea(SIow

UTC Mon Feb 23, 201

14:30:1.383526016 ® Several hundred cosmic rays crossed the detector

5ms of data at the NOVA Far Detector

(the many peaks in the timing distribution below)

nBoo

75 cm

s

Run 3493 Event 41075,

Each pixel is one hit cell
Color shows charge digitized from the light

ctober 23*¢, 2015




5ms of data at the NOVA Far Detector
Each pixel is one hit cell
Color shows ch digitized from the light

NOVA - FNAL E929

Run: 18975/ 43

Event: 628855 / SNEWSBeatSlow

UTC Mon Feb 23, 2015

14:30:1.383526016  Several hund

(the many pe!

Run 3493 Event 41075, October 23™¢, 2015



Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

MicroBooNE
~87 ton (school bus size

Liquid Argon Time Projection Chamber

 High resolution photograph of charged particle trajectories
» Calorimetric measurement + scalability to a large mass 2015




Machine Learning & Computer Vision in Neutrino Physics

Time Projection Chambers
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uBooNE’ =

Topological shape
difference is a major
distinction for “shower”
particles

T

LSl

Run 3493 Event 41075, October 237, 2015
75 cm



Machine Learning & Computer Vision in Neutrino Physics

Time Projection Chambers
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Run 3493 Event 41075, @ctober 23*¢, 2015
75 cm



Machine Learning & Computer Vision in Neutrino Physics

Time Projection Chambers
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MBOON.E% 1o

ady Many, local kinks

caused by Multiple Coulomb

». Scattering process can be
used for momentum
estimation

Run 3493 Event 41075, October 237, 2015
75 cm



Machine Learning & Computer Vision in Neutrino Physics

Time Projection Chambers

uBooN!? .
2L~ i,
- Small branches on muon-like
trajectories are knocked-off
. e electrons, useful key for the
gm0 direction

Run 3493 Event 41075, October 237, 2015
75 cm



Machine Learning & Computer Vision in Neutrino Physics

Time Projection Ghambers S W ) .
MBOONE =
Energy deposition - S;th‘i’iig
patterns (dE/dX) : - N

vary with particle mass PN .
& momentum, useful e
for analysis

e-vs.y
using dE/dX

Run 3493 Event 41075, October 237, 2015

75 cm



Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers (slow ones)
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Do you see neutrino interaction here?

Cosmic Data : Run 6280 Event 6812 May 12th, 2016



Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers (slow ones)

Now you do :)

MicroBooNE
Simulation

nBooNE

Cosmic Data : Run 6280 Event 6812 May 12th, 2016



Machine Learning & Computer Vision in Neutrino Physics

Time Projection Chambers (3D ones)
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Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!
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How to write an algorithm to
identify a cat?

T =-.__..veryhardtask..

~

19




Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!
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Development Workflow for non-ML reconstruction
1. Write an algorithm based on physics principles

;\:::‘ \—J; (13 )
pEy ‘l l‘ — C a t
At

algorithm

collection of
A cat = i 20
(or, a neutrino) certain Sha'peS



Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino! — .

DN

Development Workflow for non-ML reconstruction

Run on simulation and data samples

Observe failure cases, implement fixes/heuristics

Iterate over 2 & 3 till a satisfactory level is achieved

Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

e
| “ \||\ “Cat”
/' ' algorithm

A

2 E A cat = collection of 3

Partial cat [ .
(escaping the detector) Stretching cat (Nuclear FSI) (or, a neutrino) certain ShapeS



Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications
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Machine Learning & Computer Vision in Neutrino Physics
Object Detection & Semantic Segmentation
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arXiv:1203.06870 =

Image Context Identification



Machine Learning & Computer Vision in Neutrino Physics

Hierarchy and Correlation of Context .

1.12 woman

-0.28 in
Bl | 23 white

’ 1.45 dress
0.06 standing
-0.13 with

g~ 3.58 tennis
1.81 racket
0.06 two

0.05 people

-0.14 in
0.30 green
NeuralTalk 3
athy/neuraltalke -0.09 behind
-0.14 her

"girl in pink dress is jumping in

air.

Image Context Correlation/Hierarchy Analysis

24



Machine Learning & Computer Vision in Neutrino Physics
Object Detection for Neutrino ID

Neutrino Detection w/ R-CNN
(MicroBooNE LArTPC)

JINST 12 Po3011 (2017)
arXiv:1611.05531

Nature vol. 560 p41-p48 ‘ \ iy Nu: 0.926
(2018) A < )

| > “""i}" e §

MlcrOB OONE | Task: propose a rectangular box that
contains neutrino interaction

Simulation + Data Overlay ' [N



https://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
https://arxiv.org/abs/1611.05531

Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID B

o b AN

Separate electron/positron energy depositions from other types at raw waveform level.
Helps the downstream clustering algorithms (data/sim comparison @ arxiv:1808.07269)
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BNB Data : Run 5419 Event 6573 March 14th, 2016

Network Input Network Output =



Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID
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Architecture: U-Net + Residual Connections

input

tconv-s2-fde

softmax

Residual
connections

!

- -» Concatenation




Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation
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Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation

Region 2
i

Region 3

Region 1 .-

MicroBooNE
Data

Localized features at the
pixel-level are useful to
inspect correlation of

data features &
algorithm responses

o=
A 0.2

T SRy
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Score Score Score Score



Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation

15 cm Region 2 _,.;;'3

| __, Regionmg

Region 1 .-

[ Shower score i Sh r scor [ Shower score
[ Track score Track score [ Track score

MicroBooNE
Data

Localized features at the
pixel-level are useful to

e [ Shower score [ Shower score [ Shower score | [ sShower score inspeCt correlation Of
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2 o5 l ! data features &
S V“l . il | algorithm responses
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Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data
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“Applying CNN” is simple, but is it scalable?
LArTPC data is generally sparse, but locally dense

CNN applies
dense matrix
operations

In photographs,
all pixels are
meaningful

Figures/Texts: courtesy of
Laura Domine @ Stanford

31



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data

e an

“Applying CNN” is simple, but is it scalable?
CNN applies

dense matrix
operations

<1% of pixels
are non-zero in
LArTPC data

Zero pixels are

meaningless!
Figures/Texts: courtesy of
Laura Domine @ Stanford

In photographs,
all pixels are
meaningful

32



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data

e an
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“Applying CNN” is simple, but is it scalable?
LArTPC data is generally sparse, but locally dense

L

CNN applies
dense matrix
operations

<1% of pixels
are non-zero in
LArTPC data

Zero pixels are

meaningless!
Figures/Texts: courtesy of
Laura Domine @ Stanford

In photographs,
all pixels are
meaningful

o Scalability for larger detectors
m Computation cost increases linearly with the volume

m But the number of non-zero pixles does not .



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data

Submanifold Sparse Convolutions

Many possible definitions and implementations of ‘sparse convolutions’...

Submanifold Sparse Convolutions (arxiv:1711.10275, CVPR2018):
https://github.com/facebookresearch/SparseConvNet

State-of-the-art on ShapeNet challenge (3D part segmentation)

34


https://arxiv.org/abs/1711.10275
https://github.com/facebookresearch/SparseConvNet

Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data _ -

o ke AN

Submanifold Sparse Convolutions
Submanifold = “input data with lower effective dimension
than the space in which it lives”

Ex: 1D curve in 2+D space, 2D surface in 3+D space

Our case: the worst! 1D curve in 3D space...

‘ ‘[160
T 140

| t120
T 100

35




Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data

Submanifold Sparse Convolutions

1. Resources waste of dense convolutions on sparse data
2. Dilation problem
e 1 nonzero site leads to 39 nonzero sites after 1 convolution

e How to keep the same level of sparsity throughout the network?

3D Semantic Segmentation
with Submanifold Sparse

Convolutional Networks
(arxiv: 1711.10275)

36


https://arxiv.org/abs/1711.10275
https://arxiv.org/abs/1711.10275
https://arxiv.org/abs/1711.10275

Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data

e an
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In more details: 2 new operations

e Sparse convolutions (SC)
o Discards contribution of non-active input sites
o  Output site active if at least one input site is active
e Sparse submanifold convolutions (SSC)
o  Output size = Input size
o  Output site active iff center of receptive field active
o  Only compute features for active output sites

37



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data

Our data is locally much more dense
than ShapeNet 3D dataset




Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data

25 I
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Machine Learning & Computer Vision in Neutrino Physics

Scalable CNN for Sparse Particle Imaging Data

Sp arse Sub_manifold Type | Proton Mu/Pi Shower Delta | Michel
N Acc 0.99 0.98 0.99 0.97 0.96
Convolutional NN
e Public LArTPC simulation
o Particle tracking (Geant4) + diffusion, no
noise, true energy ‘
::a:;;I‘:;:epn;:nt\rlovlz:lr:r:;:;‘;; :;:_;:ti\al:orks for Sparse,
Mu/pi
Proton
EM Shower
[ Delta Rays
arXiv:1903.05663 presented @ ACAT 2019 N . Michel
. \
e Memory reduction ~ 1/360 N .
e Compute time ~ 1/30 .

e Handles large future detectors —


https://arxiv.org/abs/1903.05663
https://indico.cern.ch/event/708041/contributions/3269747/attachments/1812175/2960103/ACAT_2019_Laura_Domine.pdf

ML-Based LArTPC @&.&.@.
Data Reconstruction
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Machine Learning & Computer Vision in Neutrino Physics
Data Reconstruction Big Picture

SiAe
Data Reconstruction Chain
Extraction of hierarchical features...
1. Key points (particle start/end) + pixel feature extraction
2. Vertex finding + particle clustering Make it for
3. Particle type + energy/momentum Hi-resolution
3D image data

4. Interaction (“particle flow”) reconstruction




ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction

1 A

Architecture: U-Net + Residual Connections
+Point Proposal Network

Semantic
Segmentation

I I Point
I I ______________________ I I I Prediction input
PPN2
__________________ L
: Mask 2
; ! \ tconv-s2-fde
e | I ] § e P
m l | I ! I I PPN1
II!II l} ; softmax

Mask 1 i
ReS|duaI.
connections

- =» Concatenation



ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction

ol AR

Ty L

Deep Proposal




ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction
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ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction
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ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction
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ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction

1 A

0 [y o \

700

600

Prediction W




ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction
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ML-based Neutrino Data Reconstruction Chain

Stage 1: Hi-Res + Abstract Feature Extraction

[
o
[=)]

10°

104

Number of predicted points (excluding delta label points)
(=
o

Distance from predicted points to closest gt points (zoom < 10px ~ 98% of pred points)

98% of predicted points within

2 pixels of the closest label
points. On a similar plot, ~93%
of label points find predicted
I points within 2 pixels
IIIIl-.lll---I.ll
0 2 4 6 8 10

Distance to closest gt point




ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

1 A

DM

Goal: group pixels into interesting unit of instance

51



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Goal: group pixels into interesting unit of instance

Interaction Particle -



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

1 A

Jargon: Instance (-aware) Semantic Segmentation

e Mask R-CNN ... most popular in industries
o Object detection + 0/1 instance pixel masking inside each box

handbag.96

-,

| MaskRECNN" > <
arXiv:1203.06870



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Jargon: Instance (-aware) Semantic Segmentation
e Mask R-CNN ... most popular in industries

o Object detection + 0/1 instance pixel masking in each bounding box (BB)
o Based on Faster R-CNN (+ ROI-Align + instance masking layers)

o Issue: instance distinction is strongly based on unique BB position/size

54




ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

=1 AL
0 | B o \

Jargon: Instance (-aware) Semantic Segmentation
e Mask R-CNN ... most popular in industries

o Object detection + 0/1 instance pixel masking in each bounding box (BB)
o Based on Faster R-CNN (+ ROI-Align + instance masking layers)

o Issue: instance distinction is strongly based on unique BB position/size

Occlusion issue

The overlap rate of
particles is very high
especially for our signal
(neutrinos) with an event

vertex. 55




ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

=1 AL
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Jargon: Instance (-aware) Semantic Segmentation
e Mask R-CNN ... most popular in industries

o Object detection + 0/1 instance pixel masking in each bounding box (BB)
o Based on Faster R-CNN (+ ROI-Align + instance masking layers)

o Issue: instance distinction is strongly based on unique BB position/size

i+ 0. 996

1110993
ol !




ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 1: cluster segmented fragments




ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 1: cluster segmented fragments

e Tracks can be “broken” at points

e Need to cluster shower particles 4 fragments
that come in multiple fragments

4 fragments

6 fragments




ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 1: cluster segmented fragments

e Graph Neural Networks

o Define cluster fragments (nodes) by DBSCAN per segmentation mask
o Construct node features (re-use multi-scale features already extracted)

I A
u!l_ 1!!' I ala Feature Pyramid
I l - - I I I Per fragment, apply mask at
each scale + pooling to define
I I II I the same node tensor shape
: \ ! I




ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

1 A

Alternative 1: cluster segmented fragments
e Graph Neural Networks

o Define possible connections among fragments (edges)



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 1: cluster segmented fragments
e Graph Neural Networks

o Define possible connections among fragments (edges)
e “Primary” is first
shower fragment

e NxM edges is not
too large to handle

e Some edges may
have weak/difficult




ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 1: cluster segmented fragments
e Graph Neural Networks

o Define possible connections among fragments (edges)

GNN recap (maybe skip?) e Edge feature at (7, j), layer k+1
e X, and Y, are k-th layer node & edge ¥ g1 = Pl X anaXons Y, s )

e Message from the edge (1, j)

Xg|— | Xj | — | Xy |———— -+

My mpan = (X, Xep, %2
>< >< e Node feature at i, layer k+1

Yo — | Y| —— | Y5 | ——— - Xz';k—}—l = OP Mz’,j;k+1
JEN (i)




ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

1 A

Alternative 1: cluster segmented fragments
¢ Dynamic Graph Neural Networks

o Define possible connections among fragments (edges)

Qj//jy Qyﬂ/y ng L\/%/ Y

Solid edge



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

c1 AL
d b M\

Alternative 2: transform data into easily clusterable hyperspace

e GNN or CNN
o Interpret node/pixel features from GNN/CNN as hyperspace coordinate

L = aLlyar + BLgist + YLreg, ‘‘‘‘‘‘‘ {—> inter-cluster push force
' — /. <= intra-cluster pull force
@ N, \
1 1 = 2 I: ’,’. . \“ '\‘ "’__- ------- i
Lvar — == Z N Z[max (Oa I|MC - Xi” o 5V)] : : o* e : L. @)
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Equation credit: Dae Hyun K. @ Stanford Image credit: arXiv 1708.02551



https://arxiv.org/pdf/1708.02551.pdf

ML-based LArTPC Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 2: transform data into easily clusterable hyperspace

e GNN or CNN
o Interpret node/pixel features from GNN/CNN as hyperspace coordinate

Image credit: arXiv 1708.02551



https://arxiv.org/pdf/1708.02551.pdf

ML-based LArTPC Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 2: transform data into easily clusterable hyperspace

e GNN or CNN
o Interpret node/pixel features from GNN/CNN as hyperspace coordinate

ermrE n n Clustering

.

5 o '\-L,?_‘ ]
o N Ty
N R 3
i sy |

Image credit: arXiv 1801.07829



https://arxiv.org/pdf/1801.07829.pdf
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/‘ ... wrapping up ...

.

Outfine '

1. Neutrino Detectors
2. Machine Learning and Computer Vision Applications
3. ML-based Neutrino Data Reconstruction Chain

4, Summary
| o7



Machine Learning & Computer Vision in Neutrino Physics
WAKE UP WAKE UP WAKE UP — .

DM

Summary

e Neutrino detector trend: particle imaging

e Dedicated image analysis techniques needed
o Techniques developed in the field of computer vision, in
particular deep neural networks, show strong promise
m Strong synergy = collaboration with scientists beyond HEP
o “Data reconstruction” using ML (my research)
o Active but not mentioned: data/sim domain adaptation
(MINERVA paper), distributed ML on HPCs, etc.

e I am curious: please tell me about your research :)



https://arxiv.org/abs/1808.08332

FIN
Machine Learning for Particle Image Analysis

i

Questions?

69
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Why Neutrino Physms" )
Standard Model (SM)

Successful description of how we
know particles interact in nature
.. but not so much on neutrinos!

Leptons  Quarks

Neutrinos beyond SM

With neutrino oscillations firmly in place, we know at least there are 3
mass eigenstates. But there 1s much more to learn...

Mass hierarchy

- m 9 CP violation Sterile neutrino?
m, > m,?



Why Neutrino Physics? (II)

Which makes them natural probes to the universe and its history
|

a
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MI Atmospheric Earth ‘ 4 > Background from old supernova
&F 7 e S \ ‘
e =

- = -8 Terrestrial anti-v
p 2 P ‘ ,(’)
=2 - g = Atmospheric v
: B
v from AGN -~
Accelerator . Reactor
Ay s
1) 10° 10 1 10° 10° 10° 10" 10" 10'®
i ueV.  meV eV keV MeV GeV TeVv PeV EeV
-l =

Neutrino energ
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Oscillation physics has taught us a lot, but still much to learn...



uBooNE
e

Topological shape
difference is a major
distinction for “shower”
particles

Run 3493 Event 41075, October 23*¢, 2015
75 cm



uBooNE
e

Trajectory ends are
distinct, and useful for
seeding particle
clustering and
trajectory fitting

Run 3493 Event 41075, October 23*¢, 2015

75 cm



; Many, local ‘KIItk
v by Multiple Coulomb
Scattering process can be
.used for momentum
- estimation
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Small branches on muon-like
trajectories are knocked-off

N electrons, useful key for the
: direction
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Energy deposition
patterns (dE/dX)
vary with particle mass
& momentum, useful .
for analysis £ = y:
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Energy deposition
patterns (dE/dX) =
vary with particle mass &~ < &0
& momentum, useful RN

for analysis
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using dE/dX
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How image classification works
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How image classification works

Intermediate Data Tensor
(low-resolution, high-level features)
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How pixel segmentation works

« Combine “up-sampling” + convolutions
 Output: “learnable” interpolation filters
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Machine Learning for Particle Image Analysis
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How pixel segmentation works

« Combine “up-sampling” + convolutions
 Output: “learnable” interpolation filters

Intermediate Data Tensor

(low-resolution, high-level features)
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Concatenation recovers spatial resolution information
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Parasitic multi-task scheme for point prediction
network (PPN) on U-ResNet ... 2D/3D agnostic
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Super-Kamiokande
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in Super-K. '

A 603MeV muon




A 492MeV electron in Super-K. .'
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FanStnsent 110001521 Scintillator Detector

TimeStamp : 130 A : ; KamIAND

TriggerType :

Time Difference
NumHit/Nsum/N wHitA ¢ 1317/264/1322/46
Total Charge 21e+05 (465)

Max Charge (ch): 2, 03 (640)
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