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Machine Learning & Computer Vision in Neutrino Physics
Neutrino Detectors: What’s Important

What’s important?
Three important detector features for oscillation measurement

Large Mass
(scalable)

Good Energy
Resolution

Particle ID
Capability

“More” statistics to measure
rare physics process

Better ν identification
background rejection

Precise Eν reduce
oscillation uncertainty 

e

Neutrino Oscillation Measurement
Use a neutrino source (flavour X), measure flavour Y at the detector
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Machine Learning & Computer Vision in Neutrino Physics
Neutrino Detectors: Early Days

Inverse Beta Decay (IBD)
νe + p → e+ + n

by Reines & Cowan (Nobel Prize 1995)

First neutrino detection

Cd-doped water
0.4 ton, 100 PMTs

(1956)







Need for advanced algorithms 
for analyzing high resolution data with 

complex topologies. 
(goal: maximize physics output)
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

νμ

Liquid Argon Time Projection Chamber
• High resolution photograph of charged particle trajectories
• Calorimetric measurement + scalability to a large mass

~mm/pixel spatial resolution
~MeV level sensitivity

MicroBooNE
~87 ton (school bus size)
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Topological shape 
difference is a major 
distinction for “shower” 
particles



11

Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Trajectory ends are 
distinct, and useful for 
seeding particle 
clustering and trajectory 
fitting
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Many, local kinks  
caused by Multiple Coulomb 
Scattering process can be 
used for momentum 
estimation
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Small branches on muon-like 
trajectories are knocked-off 
electrons, useful key for the 
direction
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Stopping 
particle

e- vs. γ
using dE/dX

Energy deposition 
patterns (dE/dX) 
vary with particle mass 
& momentum, useful 
for analysis 
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers (slow ones)

100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

Do you see neutrino interaction here?
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers (slow ones)

100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

Now you do :)
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers (3D ones)



Machine Learning and
Computer Vision
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Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

How to write an algorithm to 
identify a cat?

… very hard task ...
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Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

1.  Write an algorithm based on physics principles
Development Workflow for non-ML reconstruction

algorithm

collection of 
certain shapesA cat  =

(or, a neutrino)



21

Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

algorithm

collection of 
certain shapesA cat  =

(or, a neutrino)

1.  Write an algorithm based on physics principles
2.  Run on simulation and data samples
3.  Observe failure cases, implement fixes/heuristics
4.  Iterate over 2 & 3 till a satisfactory level is achieved
5.  Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Partial cat
(escaping the detector) Stretching cat (Nuclear FSI)

Development Workflow for non-ML reconstruction
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Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

NOvA Neutrino
Event Topology

NEXT
Signal vs. Background

MicroBooNE
Signal/Background

e γ μ

LArLIAT
Particle Type Identification
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Machine Learning & Computer Vision in Neutrino Physics
Object Detection & Semantic Segmentation

Image Context Identification
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Machine Learning & Computer Vision in Neutrino Physics
Hierarchy and Correlation of Context

Image Context Correlation/Hierarchy Analysis
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Machine Learning & Computer Vision in Neutrino Physics
Object Detection for Neutrino ID

MicroBooNE
Simulation + Data Overlay

νμ

JINST 12 P03011 (2017)
arXiv:1611.05531

Neutrino Detection w/ R-CNN
(MicroBooNE LArTPC)

Task: propose a rectangular box that 
contains neutrino interaction
 (location & size) 

Nature vol. 560 p41-p48 
(2018)

https://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
https://arxiv.org/abs/1611.05531
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Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID
Separate electron/positron energy depositions from other types at raw waveform level. 
Helps the downstream clustering algorithms (data/sim comparison @ arxiv:1808.07269)



Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID

Encoder Decoder

Residual
connections

input

conv

conv-s2-finc

tconv-s2-fde

softmax

Concatenation

conv-fdec

Architecture: U-Net + Residual Connections



Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation



Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation

Localized features at the 
pixel-level are useful to 
inspect correlation of 

data features & 
algorithm responses



Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation

Localized features at the 
pixel-level are useful to 
inspect correlation of 

data features & 
algorithm responses



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data

31

“Applying CNN” is simple, but is it scalable?
LArTPC data is generally sparse, but locally dense

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

Figures/Texts: courtesy of 
Laura Domine @ Stanford



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data
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“Applying CNN” is simple, but is it scalable?
LArTPC data is generally sparse, but locally dense

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

Figures/Texts: courtesy of 
Laura Domine @ Stanford

<1% of pixels 
are non-zero in 
LArTPC data

Zero pixels are 
meaningless!



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data
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“Applying CNN” is simple, but is it scalable?
LArTPC data is generally sparse, but locally dense

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

Figures/Texts: courtesy of 
Laura Domine @ Stanford

<1% of pixels 
are non-zero in 
LArTPC data

Zero pixels are 
meaningless!

○ Scalability for larger detectors
■ Computation cost increases linearly with the volume
■ But the number of non-zero pixles does not



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data
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Submanifold Sparse Convolutions
Many possible definitions and implementations of ‘sparse convolutions’...

Submanifold Sparse Convolutions (arxiv:1711.10275, CVPR2018): 
https://github.com/facebookresearch/SparseConvNet

State-of-the-art on ShapeNet challenge (3D part segmentation)

https://arxiv.org/abs/1711.10275
https://github.com/facebookresearch/SparseConvNet


Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data
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Submanifold Sparse Convolutions
Submanifold = “input data with lower effective dimension 
than the space in which it lives”

Ex: 1D curve in 2+D space, 2D surface in 3+D space

Our case: the worst! 1D curve in 3D space...



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data
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Submanifold Sparse Convolutions

3D Semantic Segmentation 
with Submanifold Sparse 
Convolutional Networks 
(arxiv: 1711.10275)

1. Resources waste of dense convolutions on sparse data

2. Dilation problem

● 1 nonzero site leads to 3d nonzero sites after 1 convolution

● How to keep the same level of sparsity throughout the network?

https://arxiv.org/abs/1711.10275
https://arxiv.org/abs/1711.10275
https://arxiv.org/abs/1711.10275


Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data
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In more details: 2 new operations
● Sparse convolutions (SC)

○ Discards contribution of non-active input sites
○ Output site active if at least one input site is active

● Sparse submanifold convolutions (SSC)
○ Output size = Input size
○ Output site active iff center of receptive field active
○ Only compute features for active output sites



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data
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Our data is locally much more dense 
than ShapeNet 3D dataset



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data
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Sparse U-ResNet fits more data in GPU + good scalability

@batch size 88
sparse uses 
93x less memory
 than dense and 
computation is
3x faster



Machine Learning & Computer Vision in Neutrino Physics
Scalable CNN for Sparse Particle Imaging Data
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Type Proton Mu/Pi Shower Delta Michel

Acc. 0.99 0.98 0.99 0.97 0.96

Mu/pi
Proton
EM Shower
Delta Rays
MichelarXiv:1903.05663 presented @ ACAT 2019

● Memory reduction ~ 1/360
● Compute time ~ 1/30
● Handles large future detectors 

Sparse Sub-manifold
Convolutional NN
●  Public LArTPC simulation

○ Particle tracking (Geant4) + diffusion, no 
noise, true  energy 

●  Five type segmentation

https://arxiv.org/abs/1903.05663
https://indico.cern.ch/event/708041/contributions/3269747/attachments/1812175/2960103/ACAT_2019_Laura_Domine.pdf


ML-Based LArTPC
Data Reconstruction

41



Machine Learning & Computer Vision in Neutrino Physics
Data Reconstruction Big Picture

Data Reconstruction Chain
Extraction of hierarchical features...
1. Key points (particle start/end) + pixel feature extraction
2. Vertex finding + particle clustering
3. Particle type + energy/momentum 
4. Interaction (“particle flow”) reconstruction

Step 1

pepi

p

Step 2 Step 3Input

Make it for
 Hi-resolution
3D image data



PPN 1

PPN 2

Mask 1

Mask 2

Point
Prediction

Semantic
Segmentation

input

conv

conv-s2-finc

tconv-s2-fde

softmax

conv-fdec

Residual
connections
Concatenation

Architecture: U-Net + Residual Connections
                  +Point Proposal Network

ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction



ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction

Deep Proposal



ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction

Input



ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction

Prediction



ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction

Input



ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction

Prediction



ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction

Deep Proposal



ML-based Neutrino Data Reconstruction Chain
Stage 1: Hi-Res + Abstract Feature Extraction

98% of predicted points within 
2 pixels of the closest label 
points. On a similar plot, ~93% 
of label points find predicted 
points within 2 pixels
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Goal: group pixels into interesting unit of instance

1.5 m

1.5 m

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering



52Interaction Particle

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Goal: group pixels into interesting unit of instance
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Jargon: Instance (-aware) Semantic Segmentation
● Mask R-CNN … most popular in industries

○ Object detection + 0/1 instance pixel masking inside each box

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering
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Jargon: Instance (-aware) Semantic Segmentation
● Mask R-CNN … most popular in industries

○ Object detection + 0/1 instance pixel masking in each bounding box (BB)
○ Based on Faster R-CNN (+ ROI-Align + instance masking layers)
○ Issue: instance distinction is strongly based on unique BB position/size

𝜇 𝜇

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering
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Jargon: Instance (-aware) Semantic Segmentation
● Mask R-CNN … most popular in industries

○ Object detection + 0/1 instance pixel masking in each bounding box (BB)
○ Based on Faster R-CNN (+ ROI-Align + instance masking layers)
○ Issue: instance distinction is strongly based on unique BB position/size

𝜇 𝜇
Occlusion issue

The overlap rate of 
particles is very high 

especially for our signal 
(neutrinos) with an event 

vertex.

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering
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Jargon: Instance (-aware) Semantic Segmentation
● Mask R-CNN … most popular in industries

○ Object detection + 0/1 instance pixel masking in each bounding box (BB)
○ Based on Faster R-CNN (+ ROI-Align + instance masking layers)
○ Issue: instance distinction is strongly based on unique BB position/size

𝜇 𝜇

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering
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ML-based LArTPC Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 1: cluster segmented fragments

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering
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ML-based LArTPC Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 1: cluster segmented fragments

● Tracks can be “broken” at points

● Need to cluster shower particles 
that come in multiple fragments

4 fragments

6 fragments

4 fragments

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering



Alternative 1: cluster segmented fragments
● Graph Neural Networks

○ Define cluster fragments (nodes) by DBSCAN per segmentation mask
○ Construct node features (re-use multi-scale features already extracted)

ala Feature Pyramid
Per fragment, apply mask at 

each scale + pooling to define 
the same node tensor shape

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering



Alternative 1: cluster segmented fragments
● Graph Neural Networks

○ Define cluster fragments (nodes) by DBSCAN per segmentation mask
○ Construct node features (re-use multi-scale features already extracted)
○ Define possible connections among fragments (edges)

Shower

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering



Alternative 1: cluster segmented fragments
● Graph Neural Networks

○ Define cluster fragments (nodes) by DBSCAN per segmentation mask
○ Construct node features (re-use multi-scale features already extracted)
○ Define possible connections among fragments (edges)

Shower e.g. Bipartite

Primary

Secondary

● “Primary” is first 
shower fragment

● NxM edges is not 
too large to handle

● Some edges may 
have weak/difficult 

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Edge



● Edge feature at (i, j), layer k+1

● Message from the edge (i, j)

● Node feature at i, layer k+1

Alternative 1: cluster segmented fragments
● Graph Neural Networks

○ Define cluster fragments (nodes) by DBSCAN per segmentation mask
○ Construct node features (re-use multi-scale features already extracted)
○ Define possible connections among fragments (edges)

GNN recap (maybe skip?)
● Xk and Yk are k-th layer node & edge

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering



Alternative 1: cluster segmented fragments
● Dynamic Graph Neural Networks

○ Define cluster fragments (nodes) by DBSCAN per segmentation mask
○ Construct node features (re-use multi-scale features already extracted)
○ Define possible connections among fragments (edges)

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Edge

Solid edge



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 2: transform data into easily clusterable hyperspace
● GNN or CNN

○ Interpret node/pixel features from GNN/CNN as hyperspace coordinate 

Equation credit: Dae Hyun K. @ Stanford Image credit: arXiv 1708.02551

https://arxiv.org/pdf/1708.02551.pdf


ML-based LArTPC Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 2: transform data into easily clusterable hyperspace
● GNN or CNN

○ Interpret node/pixel features from GNN/CNN as hyperspace coordinate 

Image credit: arXiv 1708.02551

https://arxiv.org/pdf/1708.02551.pdf


ML-based LArTPC Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Alternative 2: transform data into easily clusterable hyperspace
● GNN or CNN

○ Interpret node/pixel features from GNN/CNN as hyperspace coordinate 

Image credit: arXiv 1801.07829

https://arxiv.org/pdf/1801.07829.pdf


… wrapping up …
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Machine Learning & Computer Vision in Neutrino Physics
WAKE UP    WAKE UP    WAKE UP

Summary

● Neutrino detector trend: particle imaging

● Dedicated image analysis techniques needed
○ Techniques developed in the field of computer vision, in 

particular deep neural networks, show strong promise
■ Strong synergy = collaboration with scientists beyond HEP

○ “Data reconstruction” using ML (my research)
○ Active but not mentioned: data/sim domain adaptation 

(MINERvA paper), distributed ML on HPCs, etc.

● I am curious: please tell me about your research :)

https://arxiv.org/abs/1808.08332
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FIN
Machine Learning for Particle Image Analysis

Questions?
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Back Up Slides



Standard Model (SM)
Successful description of how we 
know particles interact in nature
… but not so much on neutrinos!

71

Neutrinos beyond SM
With neutrino oscillations firmly in place, we know at least there are 3 
mass eigenstates. But there is much more to learn…

νe νμ ντ

Why Neutrino Physics? (I)

Mass hierarchy
m1 > m3?

CP violation Sterile neutrino?

νe νμ

ντ ν?

?
ν1

ν3



SuperNova

Sun Atmospheric

AGN

ReactorAccelerator

Earth

Good Stuff

Relic Neutrinos

Neutrinos are everywhere
Which makes them natural probes to the universe and its history

Need to understand more about them!
Oscillation physics has taught us a lot, but still much to learn…

EPJ H37 (2012) 3:515-565
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Why Neutrino Physics? (II)
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Topological shape 
difference is a major 
distinction for “shower” 
particles

Hi-Res Particle Imaging
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Trajectory ends are 
distinct, and useful for 
seeding particle 
clustering and 
trajectory fitting

Hi-Res Particle Imaging
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Many, local kinks  caused 
by Multiple Coulomb 
Scattering process can be 
used for momentum 
estimation

Hi-Res Particle Imaging
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Small branches on muon-like 
trajectories are knocked-off 
electrons, useful key for the 
direction

Hi-Res Particle Imaging
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Highly ionizing 
proton

Hi-Res Particle Imaging

Energy deposition 
patterns (dE/dX) 
vary with particle mass 
& momentum, useful 
for analysis 
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Stopping 
particle

e- vs. γ
using dE/dX

Hi-Res Particle Imaging

Energy deposition 
patterns (dE/dX) 
vary with particle mass 
& momentum, useful 
for analysis 
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Machine Learning for Particle Image Analysis
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HO HO HO
Machine Learning for Particle Image Analysis



Neutrino Oscillation Experiments (I)

Water Cherenkov Detector
Super-Kamiokande84



Water Cherenkov Detector
Super-Kamiokande85

Neutrino Oscillation Experiments (I)



Liquid Scintillator Detector
KamLAND

Less topological information
but excellent energy resolution

86

Neutrino Oscillation Experiments (I)


