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Generative models



Generative models

Given samples of a random variable X, find X′, such that:

P(X) ≈ P(X′)
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Applications

• auxiliary tasks:
• pivoted models;

• data manipulation:
• realistic image-to-image
translation;

• approximation of existing
generators:

• fast Monte-Carlo;

• data compression.

Images are from https://arxiv.org/abs/1611.07004

3



Types of generative models

Density estimation:

• usually, density is known up to a constant (e.g. RBM):

f(x) = C · p(x)

• sampling is via MCMC;
• challenging in high dimensional spaces.
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Types of generative models

Sampling procedure:

• learning transformation from a simple random variable to the target one:

Z ∼ N n(0, 1);

X′ = f(Z).

• density is often intractable:

p(x) =
∑

z|f(z)=x
p(z)

∣∣∣∣ ∂∂z f(z)
∣∣∣∣−1
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Kernel Density Estimation



Kernel Density Estimation

Main idea: place a small gaussian-like function around each sample:

• sample {xi}Ni=1
• kernel k(x): ∫

X
k(x)dx = 1;

• kernel width h;

fKDE(x) =
1

hN
∑

i
k
(

x− xi
h

)
;

(almost) theorem
When N→∞ and h→ 0:

fKDE(x)→ p(x).
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Kernel Density Estimation

https://scikit-learn.org/stable/modules/density.html 7



Kernel Density Estimation

https://www.ucl.ac.uk/ ucfbpve/papers/VermeeschChemGeol2012/ 8



Kernel Density Estimation

• kernel selection:
• Gaussian, Epanechnikov kernels produce smooth densities;
• Epanechnikov, linear kernels are faster to compute:

• depends on nearest neighbour algorithm;

• kernel width:
• a hyper-parameter;
• selected by e.g. cross-validation.
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Kernel Density Estimation

Advantages:
• (almost) simple;
• (almost) trivial sampling;
• (almost) no training;
• explicit density estimation;
• great for 1-2 dimensional
problems.

Disadvantages:
• complexity O(logN) for evaluation
in one point;

• performs poorly on
high-dimensional problems;

• need to memorize the whole
training set.
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Gaussian Mixtures



Gaussian Mixtures

A similar to KDE idea — describe probability density as a mixture of Gaussians:

• unlike KDE, centers and widths of Gaussians are learnt;
• usually, number of components n is much smaller than the number of
samples N.

f(x) = 1
n
∑

j
ϕ(x | µj,Σj)

where:

• ϕ(x | µ,Σ) — density of the Gaussian distribution with mean µ and
covariance matrix Σ.
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Gaussian Mixtures

Training is done by maximizing likelihood:

L =
∑

i
log

 1
N
∑

j
ϕ(xi | µj,Σj)

→ max

• Expectation-Maximization algorithm;
• priors are possible (ML→ MAP).
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Gaussian Mixtures

Types of GMM:
• spherical: Σ = σ · I;
• diagonal: Σ = diag(σ1, σ2, . . . );
• tied: Σ1 = Σ2 = . . . ;
• …
• full;

https://scikit-learn.org/stable/modules/mixture.html

13



Gaussian Mixtures

Advantages:
• simple;
• trivial sampling;
• explicit density estimation;
• great for 1-2 dimensional
problems;

• tends to have fewer parameters
than KDE.

Disadvantages:
• complexity O(n) for evaluation in
one point;

• performs poorly on
high-dimensional problems;
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Variational AutoEncoder



Latent variables revisited

Before generating a sample, model
should first decide what it should
generate:
• which digit to generate: 0, 1, …, 9
• width of stokes;
• ’speed’;
• etc.

Such decision can be represented as
latent variables.
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Variational AutoEncoder

VAE non-deterministically transforms latent variables Z into samples X:

1. given latent variables z, VAE computes f(z);
2. f(z) represents parameters of some distribution;
3. examples are sampled from P(x | f(z)).

This section is largely based on https://arxiv.org/abs/1606.05908.
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Variational AutoEncoder

Common choices:

• continuous data: -P(x | f(z)) = N (x | f(z), σ2I);
• σ — hyper-parameter;
• I — identity matrix.

• discrete data:
• P(x | f(z)) = Bi(x | f(z)):
• P(x | f(z)) = Multi(x | f(z)).

How to choose latent variables?
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Variational AutoEncoder

How to choose latent variables?

• let P̂ be a magical optimal choice of latent variables;
• let z ∼ Nm(0, 1);
• if model G has enough capacity, then

∃g ∈ G : g(z) ∼ P̂.

Let the network assign the meaning of the latent variables.
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VAE training

Maximum Likelihood: ∑
i

logP(xi)→ max

where {xi}Ni=1 — observed data.

P(x) =
∫

P(x | z)P(z)dz = E
Z

P(x | Z)

• for the most of z: P(x | z) ≈ 0.

How to deal with the integral?
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Variational bound

P(x) =
∫

P(x | z)P(z)dz = E
Z

P(x | Z)

In order to make sampling tractable, P(z) can be replaced by some Q(z | x):

P(x) = E
Z

P(x | Z)→ E
Z∼Q(z|x)

P(x | Z)

Let’s consider KL divergence:

KL (Q(z | x) ∥ P(z | x)) = E
Z∼Q(z|x)

[logQ(Z | x)− logP(Z | x)]
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Variational bound

KL (Q(z | x) | P(z | x)) =

E
Z∼Q(z|x)

[logQ(Z | x)− logP(Z | x)] =

E
Z∼Q(z|x)

[logQ(Z | x)− logP(x | Z)− logP(Z)] + logP(x)

logP(x)−KL (Q(z | x) ∥ P(z | x)) = E
Z∼Q(z|x)

logP(x | Z)−KL (Q(z | x) ∥ P(z))
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Variational bound

l(x) = logP(x)︸ ︷︷ ︸
MLE objective

− KL (Q(z | x) ∥ P(z | x))︸ ︷︷ ︸
inference penalty, ≥ 0

=

E
Z∼Q(z|x)

logP(x | Z)︸ ︷︷ ︸
reconstruction error

−KL (Q(z | x) ∥ P(z))︸ ︷︷ ︸
regularization

logP(x) ≥ l(x)→ max
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VAE objective

L =
∑

i

[
E

Z∼Q(z|xi)
logP(xi | Z)−KL (Q(z | xi) ∥ P(z))

]

• reconstruction error can be estimated by sampling z from Q(z | xi):

E
Z∼Q(z|xi)

logP(xi | Z)→ RE(xi, z)

• regularization term is, usually, computed analytically.
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Reconstruction error

RE(x, z) = logP(x | z)

• for Gaussian posterior i.e. P(x | z) = N (x | f(z), σ2I):

RE(x, z) ∝ (f(z)− x)2

• for Benulli posterior ( e.g. for discrete output) P(X = 1 | z) = f(z):

RE(x, z) = x log f(z) + (1− x) log(1− f(z))
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Limitations

Image (b) — slightly altered image (a), image (c) — image (a) shifted by several pixels.
Under MSE metric, image (b) is much closer to (a), than (c) to (a).
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Regularization

Consider:

• Q(z | x) = N (z | µ(x),Σ(x));
• P(z) = N (0, I):

KL (N (x | µ(z),Σ(z)) ∥ N (x | µ(z),Σ(z))) =

1
2
(
tr(Σ(x)) + ∥µ(x)∥2 − k− log detΣ(x)

)
=

1
2

(
∥µ(x)∥2 +

∑
i

Σii(x)− log Σii(x)
)
− k

2
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Training time
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Testing time
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Conditional VAE
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Generative Adversarial Networks



Fitting Distributions

Notation: Q - ground truth distribution, P - model distribution.

Maximum Likelihood:

L =
∑

i
logP(xi) ≈ E

X∼Q
logP(X)→P min;

KL (Q ∥ P) = E
X∼Q

logQ(X)− E
X∼Q

logP(X)→P min .

Jensen-Shannon distance:

JS(P,Q) =
1
2 [KL (P ∥ M) + KL (Q ∥ M)]→P min;

M =
1
2(P + Q).
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Approximating JS distance

JS(P,Q) =
1
2

[
E

X∼P
log

P(X)

M(X)
+ E

X∼Q
log

Q(X)

M(X)

]
=

1
2

[
E

X∼P
log

P(X)

P(X) + Q(X)
+ E

X∼Q
log

Q(X)

P(X) + Q(X)

]
+ log 2 =

E
X∼M

P(X)

P(X) + Q(X)
log

P(X)

P(X) + Q(X)
+ E

X∼M

Q(X)

P(X) + Q(X)
log

Q(X)

P(X) + Q(X)
+ log 2

31



Approximating JS distance

Let’s introduce binary indicator y: y = 1 if x is sampled from P and y = 0 for Q:

JS(P,Q)− log 2 =

E
X∼M

P(X)

P(X) + Q(X)
log

P(X)

P(X) + Q(X)
+ E

X∼M

Q(X)

P(X) + Q(X)
log

Q(X)

P(X) + Q(X)
=

E
X∼M,Y

P(Y = 1 | X) logP(Y = 1 | X) + P(Y = 0 | X) logP(Y = 0 | X) =

max
f

E
X,Y

Y log f(X) + (1−Y) log(1− f(X))
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Approximating JS distance

JS(P,Q) =

log 2 +max
f

E
X,Y

Y log f(X) + (1−Y) log(1− f(X)) =

log 2−min
f
L(f | P,Q)

where L — cross-entropy loss.
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Approximating JS distance

arg min
P

JS(P,Q) = arg max
P

[
min

f
L(f | P,Q)

]
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Generative Adversarial Networks

GAN makes no assumptions about nature of P:

• the most popular choice is via a generator g:

Z ∼ Nm(0, 1);

X = g(Z).
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Discriminator

Minimization of L(f | P,Q) is a classical classification problem:

• f is often defined by a neural network — discriminator;
• Q is defined by given dataset;
• P is defined by the generator.
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Discriminator

Algorithm 1 Disriminator Training
while not enough do

sample x from the dataset;
sample latent variables z from Nm(0, 1);

θ ← θ + λθ∇θ [log fθ(x) + log (1− fθ(gψ(z)))]
end while

• θ — parameters of the discriminator fθ ;
• ψ — parameters of the generator gψ ;
• λθ — SGD learning rate.
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Generator training

Generator is often trained by gradient methods, using:

∆ψ ∝ ∇ψ EZ log(1− f(gψ(Z)))
∣∣∣∣
f=f∗

as subderivative, where:

• f∗ = arg minf L(f∗ | Pψ,Q).
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Generator training
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Adversarial Training

Algorithm 2 Generative Adversarial Training

while not enough do
for i := 1, . . . ,n do

sample x from the dataset;
sample latent variables z from Nm(0, 1);
θ ← θ + λθ∇θ [log fθ(x) + log (1− fθ(gψ(z)))]

end for

sample latent variables z from Nm(0, 1);
ψ ← ψ − λψ∇ψ [log (1− fθ(gψ(z)))]

end while

40



Generative Adversarial Networks

Source: https://sthalles.github.io/assets/dcgan/GANs.png
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Game interpretation

L(θ, ψ) = −1
2

[
E

X∼Q
log fθ(X) + E

Z∼Z
log (1− fθ(gψ(Z)))

]
Min-max game:

• goal of discriminator: distinguish between real and generated samples:

L(θ, ψ)→θ min

• goal of generator: ’fool’ discriminator:

L(θ, ψ)→ψ max
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CIFAR examples
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Vanishing gradients

Consider toy problem:
• powerfull discriminator;
• (almost) disjoint supports:

• unlucky initial guess;
• target data is on low-dimensional
manifold;
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Vanishing gradients

After training discriminator:

∂L(θ, ψ)
∂ψ

= − 1
1− f(g(z)) ·

∂f
∂g ·

∂g
∂ψ

;

f(g(z)) ≈ 0;

f
∂g ≈ 0.

⇒ gradients tend to vanish on early stages.
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Vanishing gradients
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Mode collapse
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Mode collapse
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GAN training tricks



Fight for the gradients

Start with heavily restricted discriminator:

• don’t train discriminator fully:
• poor-man solution;

• add noise to the samples:
• nicely works for target on low-dimensional manifolds;
• easy to control.

• heavy regularization:
• might interfere with the convergence.

As learning progresses gradually relax restrictions.
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Fight for the gradients
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Fight for the gradients
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Generator collapse

Often generator learns to output constant or just few values. This is a syndrome
of poorly trained discriminator:

• generator aims to maximize discriminator loss;
• discriminator does not adapt quickly enough;
• generator collapses into a current maxima of discriminator.
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Feature matching

Let h be some feature, then feature matching is an auxiliary objective:

Lfm = ∥ E
X∼data

h(X)− E
Z

h(g(Z))∥2

Alternatively, adversarial objective might be used as well:

• just add feature h to the discriminator input;
• use a separate (simple) discriminator.
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Summary



Summary

Kernel Density Estimation:

• good for 1-2 dimensional problems;
• might be computationally expensive;
• explicit probability density;

Gaussian Mixture Models:

• similar to KDE;
• explicit probability density;
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Summary

Variational Auto-Encoder:

• a powerful generative model;
• easy to train;

Generative Adversarial:

• a powerful generative model;
• hard to train;
• a huge number of modifications:

• Wasserstein-GAN solves problem of vanishing gradients;
• BiGAN, ALI add inference;
• CycleGAN allows to learn transformation between two unpaired sets;
• and many more.

55



References I

• Bengio Y. Learning deep architectures for AI. Foundations and trends® in
Machine Learning. 2009 Nov 15;2(1):1-27.

• Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets.
Neural computation. 2006 Jul;18(7):1527-54.

• Nair V, Hinton GE. Rectified linear units improve restricted boltzmann
machines. InProceedings of the 27th international conference on machine
learning (ICML-10) 2010 (pp. 807-814).

56



References II

• Hinton G. A practical guide to training restricted Boltzmann machines.
Momentum. 2010 Aug 2;9(1):926.

• Tieleman T. Training restricted Boltzmann machines using approximations to
the likelihood gradient. InProceedings of the 25th international conference
on Machine learning 2008 Jul 5 (pp. 1064-1071). ACM.

57


	Generative models
	Kernel Density Estimation
	Gaussian Mixtures
	Variational AutoEncoder
	Generative Adversarial Networks
	GAN training tricks
	Summary

