Generative Models, part |
Machine Learning in High Energy Physics

Maxim Borisyak

National Research University Higher School of Economics

June 30, 2019

Generative models

Generative models

Given samples of a random variable X, find X, such that:

Applications

- auxiliary tasks: Y _
- pivoted models; Gm/j ,-4
- data manipulation: ‘
- realistic image-to-image
translation;

- approximation of existing
generators:

- fast Monte-Carlo;

- data compression.

Images are from https://arxiv.org/abs/1611.07004

Types of generative models

Density estimation:
- usually, density is known up to a constant (e.g. RBM):
flz) = C- p(z)

- sampling is via MCMC,
- challenging in high dimensional spaces.

Types of generative models

Sampling procedure:

- learning transformation from a simple random variable to the target one:

Z ~ N™0,1);
X = f2).
density is often intractable:
P —1
@)= > p()|5-f2

Kernel Density Estimation

Kernel Density Estimation

Main idea: place a small gaussian-like function around each sample:

- sample {z;}¥,
- kernel k(x):

/X K(x)di = 1;

T— 3\
fxpe(z hNZk(>,

- kernel width &;

(almost) theorem
When N — oo and A — 0:

frpr(z) = p(z).

Kernel Density Estimation

Available Kernels

gaussian tophat epanechnikov
T T T T T T T T T T T T
exponential linear cosine
T T T T T T T T T T T T T T T
2h h 0 h 2h 2h h 0 h 2h 2h -h 0 h 2h

https://scikit-learn.org/stable/modules/density.html

Kernel Density Estimation

Kernel

"Normal Triangle’ '"Epanechnikov’

/N

3 4Ga 0 1

I} MLQ ML ML

1 G 4Ga 0 1

3 4Ga 0 1

Bandwidth

https://www.ucl.ac.uk/ ucfbpve/papers/VermeeschChemGeol2012/

Kernel Density Estimation

- kernel selection:

- Gaussian, Epanechnikov kernels produce smooth densities;
- Epanechnikov, linear kernels are faster to compute:

- depends on nearest neighbour algorithm;
- kernel width:

- a hyper-parameter;
- selected by e.g. cross-validation.

Kernel Density Estimation

Advantages:
- (almost) simple;
- (almost) trivial sampling;
- (almost) no training;
- explicit density estimation;

- great for 1-2 dimensional
problems.

Disadvantages:

- complexity O(log N) for evaluation
in one point;

- performs poorly on
high-dimensional problems;

+ need to memorize the whole
training set.

10

Gaussian Mixtures

Gaussian Mixtures

A similar to KDE idea — describe probability density as a mixture of Gaussians:

- unlike KDE, centers and widths of Gaussians are learnt;

- usually, number of components n is much smaller than the number of
samples N.

) =5 6l 3)

where:

- ¢(z | p, X) — density of the Gaussian distribution with mean p and
covariance matrix X.

"

Gaussian Mixtures

Training is done by maximizing likelihood:

1
L= Zlog (NZ d(xi | s Ej)> — max
(J

- Expectation-Maximization algorithm;

- priors are possible (ML — MAP).

12

Gaussian Mixtures

Types of GMM:
- spherical: ¥ =0 -
- diagonal: ¥ = diag(o1,02,...);
ctied: Xy =9 =...;

- full;

spherical

diag

X

Train accuracy: 88.3
Test accuracy 92.3

Train accuracy: 93.7
Test accuracy! 89.7

tied

full

Train accuracy: 95.5
Test accuracy! 100.0

%

Train accuracy: 94.6
Test accuracy? 97.4

- setosa

versicolor
virginica

https://scikit-learn.org/stable/modules/mixture.html

Gaussian Mixtures

Advantages:
- simple;
- trivial sampling;
- explicit density estimation;
- great for 1-2 dimensional
problems;

- tends to have fewer parameters
than KDE.

Disadvantages:
- complexity O(n) for evaluation in
one point;
- performs poorly on
high-dimensional problems;

14

Variational AutoEncoder

Latent variables revisited

Before generating a sample, model
should first decide what it should
generate:

- which digit to generate: 0, 1, ..., 9
- width of stokes;

- 'speed’;

- etc.

Such decision can be represented as
latent variables.

15

Variational AutoEncoder

VAE non-deterministically transforms latent variables Z into samples X:

1. given latent variables z VAE computes f(2);
2. f(z) represents parameters of some distribution;

3. examples are sampled from P(z | f(2)).

This section is largely based on https://arxiv.org/abs/1606.05908.

Variational AutoEncoder

Common choices:

- continuous data: -P(z | f(2)) = N(z| f(2),0

- o — hyper-parameter;
- I — identity matrix.

- discrete data:

P(z| f(2)) = Bi(z | f()):
Pz | f{z)) = Multi(z | f(z)).

How to choose latent variables?

Variational AutoEncoder

How to choose latent variables?

- let Pbea magical optimal choice of latent variables;
- let z~ N™(0,1);
- if model G has enough capacity, then

JgeG:g(z) ~ P

Let the network assign the meaning of the latent variables.

VAE training

Maximum Likelihood:
Z log P(z;) — max

1

where {z;}¥, — observed data.

- for the most of z P(z | 2) =~ 0.

How to deal with the integral?

19

Variational bound

P(z) = /P(m| 2)P(z)dz = I%P(ﬂ Z)
In order to make sampling tractable, P(z) can be replaced by some Q(z] z):

Pla)=EP(z|2)— B Pel2)

Let's consider KL divergence:

KL(Q(:| 9) | Pz|)= E oz @Q(Z|2) ~log AZ])

20

Variational bound

KL (Q(z| 2) | P(z| 2)) =

LB llogQ(Z]2) —log P(Z] 2)] =

~Q(4z)

, E_ 02 Q(Z| 2) ~ log P(x| Z) ~ log P(2)] + log P(x

log P(z) —KL(Q(=]) | P(z| 2) = | B log Pz 2) — KL(Q(z]2) || P(2))

Variational bound

(z)= logP(z) — KL(Q(z|z) || P(z]2) =
——
MLE objective inference penalty, >0

L E, logPa|2) ~KL(Q(z|2) | P(2)

: regularlzatlon
reconstruction error

log P(z) > I(x) — max

VAE objective

= Z[E log P(s |)~ KL(Q(=| @) || P(2))

Q(z|z;)

- reconstruction error can be estimated by sampling z from Q(z |

E log P(z; — RE(z;, 2
, & log Pla:| 2) > RE(x; 2

- regularization term is, usually, computed analytically.

I,L)

23

Reconstruction error

RE(z, z) = log P(z | 2)

- for Gaussian posterior i.e. P(z| 2) = N(z| f(2), o%1):
RE(z, 2) (f(2) — 2)°
- for Benulli posterior (e.g. for discrete output) P(X =1 | 2) = f(2):

RE(z, 2) = zlog f(2) + (1 — z) log(1 — f(2))

24

Limitations

(a) (b) (c)

Image (b) — slightly altered image (a), image (c) — image (a) shifted by several pixels.
Under MSE metric, image (b) is much closer to (a), than (c) to (a).

25

Regularization

Consider:
Q(z| z) = N(z| (), 2(2))
P(z) = N(0, I):

KL (N (2| u(2), 5(2) | Nz] 1(2), £(2))) =

5 (0(5(@) + [(@)]> — k— log det 2(x)) =

(HN H2+Zzu — log Xii()>_

K
2

26

Training time

Decoder

()

Encoder

(@)

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
only to the right network.

27

Testing time

f(z)

Decoder
(P)

A

| Sample z from NV (0, 1) ‘

Figure 5: The testing-time variational “autoencoder,” which allows us to
generate new samples. The “encoder” pathway is simply discarded.

28

Conditional VAE

Decoder

()

[X][sample z from A(0. T

[KLN (Y. X (Y N DN T)]] | Decoder
()

Encoder

(]

-

Figure 6: Left: a training-time conditional variational autoencoder imple-
mented as a feedforward neural network, following the same notation as
Figure[4 Right: the same model at test time, when we want to sample from
P(Y|X).

29

Generative Adversarial Networks

Fitting Distributions

Notation: @ - ground truth distribution, P - model distribution.

Maximum Likelihood:

L = ZlogP(xi) zXIEQlogP(X) — p min;

)

KL(QIP) = E lo5QX)— E_log P(X) —pmin.

Jensen-Shannon distance:

IS(P,Q) = 3 [KL(P| M)+ KL(Q | M)] —p min

M= (P+Q)

30

Approximating JS distance

IS(P.0) = 5 | B ox i + B ox
1 P(X) B
) [xlgpl"g PO+ Q) a0 %8 P(X) @(XJ *log2=
P(Y) P(Y) QLX) QLX)
xon P(X) + QX) B PO + QO T xem P(X) + Q(X) B P + Q(x) T 8?

31

Approximating JS distance

Let's introduce binary indicator . y =1 if zis sampled from Pand y = 0 for @

JS(P, Q) —log2 =

E P(X) PX) g QLX) o QX)
X~M P(X) + Q(X) 7 P(X) + QX) x~M P(X) 4+ Q(X) ~ P(X) + Q(X)

CE P(Y=1|X)log P(Y=1|X)+ P(Y=0| X)log P(Y=0] X) =

log

max B ¥Vlogf(X) + (1 - ¥)log(1 - X))

32

Approximating JS distance

IS(P, Q) =
log2 + m?xXIEY YiegfiX)+ (1— Y)log(l — f(X)) =
log2 — m}nﬁ(f] P, Q)

where £ — cross-entropy loss.

33

Approximating JS distance

argmin JS(P, ()) = arg max [min L(f| P, Q)]
P P f

34

Generative Adversarial Networks

GAN makes no assumptions about nature of P

- the most popular choice is via a generator g

Z ~ N™0,1);

X = 92).

35

Discriminator

Minimization of L(f| P, Q) is a classical classification problem:

- fis often defined by a neural network — discriminator;
- @ is defined by given dataset;
- Pis defined by the generator.

36

Discriminator

Algorithm 1 Disriminator Training

while not enough do
sample z from the dataset;
sample latent variables z from N™(0, 1);

0 < 0+ X\gV [log fo(z) + log (1 — fy(gy(2)))]
end while

- # — parameters of the discriminator fy;
- 1) — parameters of the generator gy
- Xg — SGD learning rate.

37

Generator training

Generator is often trained by gradient methods, using:

Av o Yy Elog(1 — flgs(2)
=r

as subderivative, where:

. f* = argmlnfﬁ(fk | P’qba Q)

38

Generator training

39

Adversarial Training

Algorithm 2 Generative Adversarial Training

while not enough do
fori:=1,...,ndo
sample z from the dataset;
sample latent variables z from N™(0, 1);

0 < 0+ NV [log fy(z) + log (1 — fo(gy(2)))]
end for

sample latent variables z from N™(0, 1);

Y — Ay Vy [log (1 — fo(gs(2)))]
end while

40

Generative Adversarial Networks

Training set V Discriminator

(=
@E@ g

Generator | Fake image

Source: https://sthalles.github.io/assets/dcgan/GANs.png

41

Game interpretation

£0.0) = ~5 | B, loshi(X0)+ E log (1~ hlg(2)
Min-max game:
- goal of discriminator: distinguish between real and generated samples:
L(0,1) —¢ min
- goal of generator: 'fool’ discriminator:

L(0,) = max

42

CIFAR examples

43

Vanishing gradients

Consider toy problem:

- powerfull discriminator;
- (almost) disjoint supports:
- unlucky initial guess;
- target data is on low-dimensional
manifold;

P(Xreal)

P(Xpseudo)

Toy problem

44

Vanishing gradients

After training discriminator:

oL@y _ 1o 0
oy 1—flg(s) g Oy’
flg(2) =~ 0O;

fo
% 0.

= gradients tend to vanish on early stages.

45

Vanishing gradients

14 -

12 -

10 -

0.8 -

0.4 -

0.2 -

0.0 -

Toy classical GAN

K
— h
L]
— L)X P
!]
P(Xreal) ," |1|
I 1
""" P{Xpseudo} Ii' l.1
I 1
[} 1
{]
! 1
I 1
! [}
i |
'J 1
)
i
I
+
¢
-3 -2 -1 0 3

46

Mode collapse

47

Mode collapse

48

GAN training tricks

Fight for the gradients

Start with heavily restricted discriminator:

- don’t train discriminator fully:
- poor-man solution;
- add noise to the samples:

- nicely works for target on low-dimensional manifolds;
- easy to control.

- heavy regularization:
- might interfere with the convergence.

As learning progresses gradually relax restrictions.

49

Fight for the gradients

Toy classical GAN, strong regularization

16 - h .
— L "]
14 - - : |
T :?EG;‘BX I]
12 - - \
P(Xreal) ! |
10 - h !
""" P{Xpseudo} ! i
1
0.8 - :' .‘,
06 - '] '
I 1
1

04 -
0z -
0.0 -
3] 1 D 1 2 3 3 5
X

50

Fight for the gradients

Toy classical GAN, strong noise

16 - h
— L "]
14 - - :
T :?EG;‘BX A0
12 - - \
P(Xreal) !
10 - 0
""" P{Xpseudo} !
08 -
06 -
0.4 -
0.2 -
00 - e——— e e e e

Generator collapse

Often generator learns to output constant or just few values. This is a syndrome
of poorly trained discriminator:

- generator aims to maximize discriminator loss;
- discriminator does not adapt quickly enough;

- generator collapses into a current maxima of discriminator.

52

Feature matching

Let h be some feature, then feature matching is an auxiliary objective:

Lon =1 E K0~ Eh(g(2)|

Alternatively, adversarial objective might be used as well:

- just add feature hto the discriminator input;

- use a separate (simple) discriminator.

53

Summary

Summary

Kernel Density Estimation:

- good for 1-2 dimensional problems;
- might be computationally expensive;
- explicit probability density;

Gaussian Mixture Models:

- similar to KDE;

- explicit probability density;

54

Summary

Variational Auto-Encoder:

- a powerful generative model;
- easy to train;

Generative Adversarial:

- a powerful generative model;

- hard to train;

- a huge number of modifications:
- Wasserstein-GAN solves problem of vanishing gradients;
- BiGAN, ALl add inference;

- CycleGAN allows to learn transformation between two unpaired sets;
- and many more.

55

References |

- Bengio Y. Learning deep architectures for Al. Foundations and trends® in
Machine Learning. 2009 Nov 15;2(1):1-27.

- Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets.

Neural computation. 2006 Jul;18(7):1527-54.

- Nair V, Hinton GE. Rectified linear units improve restricted boltzmann
machines. InProceedings of the 27th international conference on machine
learning (ICML-10) 2010 (pp. 807-814).

56

References Il

- Hinton G. A practical guide to training restricted Boltzmann machines.
Momentum. 2010 Aug 2:9(1):926.

- Tieleman T. Training restricted Boltzmann machines using approximations to
the likelihood gradient. InProceedings of the 25th international conference
on Machine learning 2008 Jul 5 (pp. 1064-1071). ACM.

57

	Generative models
	Kernel Density Estimation
	Gaussian Mixtures
	Variational AutoEncoder
	Generative Adversarial Networks
	GAN training tricks
	Summary

