
Generative Models, part I
Machine Learning in High Energy Physics

Maxim Borisyak

National Research University Higher School of Economics

June 30, 2019

Generative models

Generative models

Given samples of a random variable X, find X′, such that:

P(X) ≈ P(X′)

2

Applications

• auxiliary tasks:
• pivoted models;

• data manipulation:
• realistic image-to-image
translation;

• approximation of existing
generators:

• fast Monte-Carlo;

• data compression.

Images are from https://arxiv.org/abs/1611.07004

3

Types of generative models

Density estimation:

• usually, density is known up to a constant (e.g. RBM):

f(x) = C · p(x)

• sampling is via MCMC;
• challenging in high dimensional spaces.

4

Types of generative models

Sampling procedure:

• learning transformation from a simple random variable to the target one:

Z ∼ N n(0, 1);

X′ = f(Z).

• density is often intractable:

p(x) =
∑

z|f(z)=x
p(z)

∣∣∣∣ ∂∂z f(z)
∣∣∣∣−1

5

Kernel Density Estimation

Kernel Density Estimation

Main idea: place a small gaussian-like function around each sample:

• sample {xi}Ni=1
• kernel k(x): ∫

X
k(x)dx = 1;

• kernel width h;

fKDE(x) =
1

hN
∑

i
k
(

x− xi
h

)
;

(almost) theorem
When N→∞ and h→ 0:

fKDE(x)→ p(x).

6

Kernel Density Estimation

https://scikit-learn.org/stable/modules/density.html 7

Kernel Density Estimation

https://www.ucl.ac.uk/ ucfbpve/papers/VermeeschChemGeol2012/ 8

Kernel Density Estimation

• kernel selection:
• Gaussian, Epanechnikov kernels produce smooth densities;
• Epanechnikov, linear kernels are faster to compute:

• depends on nearest neighbour algorithm;

• kernel width:
• a hyper-parameter;
• selected by e.g. cross-validation.

9

Kernel Density Estimation

Advantages:
• (almost) simple;
• (almost) trivial sampling;
• (almost) no training;
• explicit density estimation;
• great for 1-2 dimensional
problems.

Disadvantages:
• complexity O(logN) for evaluation
in one point;

• performs poorly on
high-dimensional problems;

• need to memorize the whole
training set.

10

Gaussian Mixtures

Gaussian Mixtures

A similar to KDE idea — describe probability density as a mixture of Gaussians:

• unlike KDE, centers and widths of Gaussians are learnt;
• usually, number of components n is much smaller than the number of
samples N.

f(x) = 1
n
∑

j
ϕ(x | µj,Σj)

where:

• ϕ(x | µ,Σ) — density of the Gaussian distribution with mean µ and
covariance matrix Σ.

11

Gaussian Mixtures

Training is done by maximizing likelihood:

L =
∑

i
log

 1
N
∑

j
ϕ(xi | µj,Σj)

→ max

• Expectation-Maximization algorithm;
• priors are possible (ML→ MAP).

12

Gaussian Mixtures

Types of GMM:
• spherical: Σ = σ · I;
• diagonal: Σ = diag(σ1, σ2, . . .);
• tied: Σ1 = Σ2 = . . . ;
• …
• full;

https://scikit-learn.org/stable/modules/mixture.html

13

Gaussian Mixtures

Advantages:
• simple;
• trivial sampling;
• explicit density estimation;
• great for 1-2 dimensional
problems;

• tends to have fewer parameters
than KDE.

Disadvantages:
• complexity O(n) for evaluation in
one point;

• performs poorly on
high-dimensional problems;

14

Variational AutoEncoder

Latent variables revisited

Before generating a sample, model
should first decide what it should
generate:
• which digit to generate: 0, 1, …, 9
• width of stokes;
• ’speed’;
• etc.

Such decision can be represented as
latent variables.

15

Variational AutoEncoder

VAE non-deterministically transforms latent variables Z into samples X:

1. given latent variables z, VAE computes f(z);
2. f(z) represents parameters of some distribution;
3. examples are sampled from P(x | f(z)).

This section is largely based on https://arxiv.org/abs/1606.05908.

16

Variational AutoEncoder

Common choices:

• continuous data: -P(x | f(z)) = N (x | f(z), σ2I);
• σ — hyper-parameter;
• I — identity matrix.

• discrete data:
• P(x | f(z)) = Bi(x | f(z)):
• P(x | f(z)) = Multi(x | f(z)).

How to choose latent variables?

17

Variational AutoEncoder

How to choose latent variables?

• let P̂ be a magical optimal choice of latent variables;
• let z ∼ Nm(0, 1);
• if model G has enough capacity, then

∃g ∈ G : g(z) ∼ P̂.

Let the network assign the meaning of the latent variables.

18

VAE training

Maximum Likelihood: ∑
i

logP(xi)→ max

where {xi}Ni=1 — observed data.

P(x) =
∫

P(x | z)P(z)dz = E
Z

P(x | Z)

• for the most of z: P(x | z) ≈ 0.

How to deal with the integral?

19

Variational bound

P(x) =
∫

P(x | z)P(z)dz = E
Z

P(x | Z)

In order to make sampling tractable, P(z) can be replaced by some Q(z | x):

P(x) = E
Z

P(x | Z)→ E
Z∼Q(z|x)

P(x | Z)

Let’s consider KL divergence:

KL (Q(z | x) ∥ P(z | x)) = E
Z∼Q(z|x)

[logQ(Z | x)− logP(Z | x)]

20

Variational bound

KL (Q(z | x) | P(z | x)) =

E
Z∼Q(z|x)

[logQ(Z | x)− logP(Z | x)] =

E
Z∼Q(z|x)

[logQ(Z | x)− logP(x | Z)− logP(Z)] + logP(x)

logP(x)−KL (Q(z | x) ∥ P(z | x)) = E
Z∼Q(z|x)

logP(x | Z)−KL (Q(z | x) ∥ P(z))

21

Variational bound

l(x) = logP(x)︸ ︷︷ ︸
MLE objective

− KL (Q(z | x) ∥ P(z | x))︸ ︷︷ ︸
inference penalty, ≥ 0

=

E
Z∼Q(z|x)

logP(x | Z)︸ ︷︷ ︸
reconstruction error

−KL (Q(z | x) ∥ P(z))︸ ︷︷ ︸
regularization

logP(x) ≥ l(x)→ max

22

VAE objective

L =
∑

i

[
E

Z∼Q(z|xi)
logP(xi | Z)−KL (Q(z | xi) ∥ P(z))

]

• reconstruction error can be estimated by sampling z from Q(z | xi):

E
Z∼Q(z|xi)

logP(xi | Z)→ RE(xi, z)

• regularization term is, usually, computed analytically.

23

Reconstruction error

RE(x, z) = logP(x | z)

• for Gaussian posterior i.e. P(x | z) = N (x | f(z), σ2I):

RE(x, z) ∝ (f(z)− x)2

• for Benulli posterior (e.g. for discrete output) P(X = 1 | z) = f(z):

RE(x, z) = x log f(z) + (1− x) log(1− f(z))

24

Limitations

Image (b) — slightly altered image (a), image (c) — image (a) shifted by several pixels.
Under MSE metric, image (b) is much closer to (a), than (c) to (a).

25

Regularization

Consider:

• Q(z | x) = N (z | µ(x),Σ(x));
• P(z) = N (0, I):

KL (N (x | µ(z),Σ(z)) ∥ N (x | µ(z),Σ(z))) =

1
2
(
tr(Σ(x)) + ∥µ(x)∥2 − k− log detΣ(x)

)
=

1
2

(
∥µ(x)∥2 +

∑
i

Σii(x)− log Σii(x)
)
− k

2

26

Training time

27

Testing time

28

Conditional VAE

29

Generative Adversarial Networks

Fitting Distributions

Notation: Q - ground truth distribution, P - model distribution.

Maximum Likelihood:

L =
∑

i
logP(xi) ≈ E

X∼Q
logP(X)→P min;

KL (Q ∥ P) = E
X∼Q

logQ(X)− E
X∼Q

logP(X)→P min .

Jensen-Shannon distance:

JS(P,Q) =
1
2 [KL (P ∥ M) + KL (Q ∥ M)]→P min;

M =
1
2(P + Q).

30

Approximating JS distance

JS(P,Q) =
1
2

[
E

X∼P
log

P(X)

M(X)
+ E

X∼Q
log

Q(X)

M(X)

]
=

1
2

[
E

X∼P
log

P(X)

P(X) + Q(X)
+ E

X∼Q
log

Q(X)

P(X) + Q(X)

]
+ log 2 =

E
X∼M

P(X)

P(X) + Q(X)
log

P(X)

P(X) + Q(X)
+ E

X∼M

Q(X)

P(X) + Q(X)
log

Q(X)

P(X) + Q(X)
+ log 2

31

Approximating JS distance

Let’s introduce binary indicator y: y = 1 if x is sampled from P and y = 0 for Q:

JS(P,Q)− log 2 =

E
X∼M

P(X)

P(X) + Q(X)
log

P(X)

P(X) + Q(X)
+ E

X∼M

Q(X)

P(X) + Q(X)
log

Q(X)

P(X) + Q(X)
=

E
X∼M,Y

P(Y = 1 | X) logP(Y = 1 | X) + P(Y = 0 | X) logP(Y = 0 | X) =

max
f

E
X,Y

Y log f(X) + (1−Y) log(1− f(X))

32

Approximating JS distance

JS(P,Q) =

log 2 +max
f

E
X,Y

Y log f(X) + (1−Y) log(1− f(X)) =

log 2−min
f
L(f | P,Q)

where L — cross-entropy loss.

33

Approximating JS distance

arg min
P

JS(P,Q) = arg max
P

[
min

f
L(f | P,Q)

]

34

Generative Adversarial Networks

GAN makes no assumptions about nature of P:

• the most popular choice is via a generator g:

Z ∼ Nm(0, 1);

X = g(Z).

35

Discriminator

Minimization of L(f | P,Q) is a classical classification problem:

• f is often defined by a neural network — discriminator;
• Q is defined by given dataset;
• P is defined by the generator.

36

Discriminator

Algorithm 1 Disriminator Training
while not enough do

sample x from the dataset;
sample latent variables z from Nm(0, 1);

θ ← θ + λθ∇θ [log fθ(x) + log (1− fθ(gψ(z)))]
end while

• θ — parameters of the discriminator fθ ;
• ψ — parameters of the generator gψ ;
• λθ — SGD learning rate.

37

Generator training

Generator is often trained by gradient methods, using:

∆ψ ∝ ∇ψ EZ log(1− f(gψ(Z)))
∣∣∣∣
f=f∗

as subderivative, where:

• f∗ = arg minf L(f∗ | Pψ,Q).

38

Generator training

4 3 2 1 0 1 2 3

3

2

1

0

1

2

3

4 3 2 1 0 1 2 3

3

2

1

0

1

2

3

39

Adversarial Training

Algorithm 2 Generative Adversarial Training

while not enough do
for i := 1, . . . ,n do

sample x from the dataset;
sample latent variables z from Nm(0, 1);
θ ← θ + λθ∇θ [log fθ(x) + log (1− fθ(gψ(z)))]

end for

sample latent variables z from Nm(0, 1);
ψ ← ψ − λψ∇ψ [log (1− fθ(gψ(z)))]

end while

40

Generative Adversarial Networks

Source: https://sthalles.github.io/assets/dcgan/GANs.png

41

Game interpretation

L(θ, ψ) = −1
2

[
E

X∼Q
log fθ(X) + E

Z∼Z
log (1− fθ(gψ(Z)))

]
Min-max game:

• goal of discriminator: distinguish between real and generated samples:

L(θ, ψ)→θ min

• goal of generator: ’fool’ discriminator:

L(θ, ψ)→ψ max

42

CIFAR examples

43

Vanishing gradients

Consider toy problem:
• powerfull discriminator;
• (almost) disjoint supports:

• unlucky initial guess;
• target data is on low-dimensional
manifold;

44

Vanishing gradients

After training discriminator:

∂L(θ, ψ)
∂ψ

= − 1
1− f(g(z)) ·

∂f
∂g ·

∂g
∂ψ

;

f(g(z)) ≈ 0;

f
∂g ≈ 0.

⇒ gradients tend to vanish on early stages.

45

Vanishing gradients

46

Mode collapse

2 0 2 4 6 8

3

2

1

0

1

2

3

4

47

Mode collapse

2 0 2 4 6 8

3

2

1

0

1

2

3

4

48

GAN training tricks

Fight for the gradients

Start with heavily restricted discriminator:

• don’t train discriminator fully:
• poor-man solution;

• add noise to the samples:
• nicely works for target on low-dimensional manifolds;
• easy to control.

• heavy regularization:
• might interfere with the convergence.

As learning progresses gradually relax restrictions.

49

Fight for the gradients

50

Fight for the gradients

51

Generator collapse

Often generator learns to output constant or just few values. This is a syndrome
of poorly trained discriminator:

• generator aims to maximize discriminator loss;
• discriminator does not adapt quickly enough;
• generator collapses into a current maxima of discriminator.

52

Feature matching

Let h be some feature, then feature matching is an auxiliary objective:

Lfm = ∥ E
X∼data

h(X)− E
Z

h(g(Z))∥2

Alternatively, adversarial objective might be used as well:

• just add feature h to the discriminator input;
• use a separate (simple) discriminator.

53

Summary

Summary

Kernel Density Estimation:

• good for 1-2 dimensional problems;
• might be computationally expensive;
• explicit probability density;

Gaussian Mixture Models:

• similar to KDE;
• explicit probability density;

54

Summary

Variational Auto-Encoder:

• a powerful generative model;
• easy to train;

Generative Adversarial:

• a powerful generative model;
• hard to train;
• a huge number of modifications:

• Wasserstein-GAN solves problem of vanishing gradients;
• BiGAN, ALI add inference;
• CycleGAN allows to learn transformation between two unpaired sets;
• and many more.

55

References I

• Bengio Y. Learning deep architectures for AI. Foundations and trends® in
Machine Learning. 2009 Nov 15;2(1):1-27.

• Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets.
Neural computation. 2006 Jul;18(7):1527-54.

• Nair V, Hinton GE. Rectified linear units improve restricted boltzmann
machines. InProceedings of the 27th international conference on machine
learning (ICML-10) 2010 (pp. 807-814).

56

References II

• Hinton G. A practical guide to training restricted Boltzmann machines.
Momentum. 2010 Aug 2;9(1):926.

• Tieleman T. Training restricted Boltzmann machines using approximations to
the likelihood gradient. InProceedings of the 25th international conference
on Machine learning 2008 Jul 5 (pp. 1064-1071). ACM.

57

	Generative models
	Kernel Density Estimation
	Gaussian Mixtures
	Variational AutoEncoder
	Generative Adversarial Networks
	GAN training tricks
	Summary

