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TH framework

We study the anomalous Quartic Gauge-boson Couplings (aQGC) parametrized
by 18 dim-8 operators. [O. J. P. Eboli et al. ’06]

OS,0 = [(DµΦ)†DνΦ] × [(DµΦ)†DνΦ]

OS,1 = [(DµΦ)†DµΦ] × [(DνΦ)†DνΦ]

OS,2 = [(DµΦ)†DνΦ] × [(DνΦ)†DµΦ]

OM,0 = Tr
[
Ŵµν Ŵµν

]
×
[

(DβΦ)†DβΦ
]

OM,1 = Tr
[
Ŵµν Ŵνβ

]
×
[

(DβΦ)†DµΦ
]

OM,2 =
[
B̂µν B̂µν

]
×
[

(DβΦ)†DβΦ
]

OM,3 =
[
B̂µν B̂νβ

]
×
[

(DβΦ)†DµΦ
]

OM,4 =
[

(DµΦ)†ŴβνDµΦ
]
× B̂βν

OM,5 =
[

(DµΦ)†ŴβνDνΦ
]
× B̂βµ(+h.c.)

OM,7 =
[

(DµΦ)†Ŵβν ŴβµDνΦ
]

OT ,0 = Tr
[
Ŵµν Ŵµν

]
× Tr

[
ŴαβŴαβ

]
OT ,1 = Tr

[
Ŵαν Ŵµβ

]
× Tr

[
ŴµβŴαν

]
OT ,2 = Tr

[
ŴαµŴµβ

]
× Tr

[
Ŵβν Ŵνα

]
OT ,5 = Tr

[
Ŵµν Ŵµν

]
× B̂αβ B̂αβ

OT ,6 = Tr
[
Ŵαν Ŵµβ

]
× B̂µβ B̂αν

OT ,7 = Tr
[
ŴαµŴµβ

]
× B̂βν B̂να

OT ,8 = B̂µν B̂µν × B̂αβ B̂αβ

OT ,9 = B̂αµB̂µβ × B̂βν B̂να,

TGC and QGC are fully correlated at dim-6. To parametrize independent QGC
couplings not constrained by TGC measurements, we need the above operators.
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What are positivity constraints

In this work, we derive a set of “positivity constraints” on the 18 operator
coefficients, by assuming that the SMEFT has a UV completion.

What are “positivity constraints”:
I A linear combination of coefs. (FS,0,FS,1,FS,2, · · · ) must be positive.

I Or equivalently, consider a vector ~c = (FS,0,FS,1,FS,2, · · · ). Positivity says
that ~c has to be positive upon projection on a certain direction ~xi , i.e.

~c · ~xi ≥ 0

I ~xi come from the requirements that the VBS amplitudes (WW , ZZ , . . . )
satisfy the fundamental principles of QFT (analyticity, unitarity, etc.), i.e. we
have ~xWW , ~xZZ , ~xWZ , . . .

But the resulting constraint apply regardless of the amplitude from
which it is derived.
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Implications on EXP results

~xWW ,ZZ ,WZ and positivity bounds
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Cen Zhang (IHEP) Positivity VBS October 31 6



Outline

1 Derivation

2 Implication

3 Conclusion

Cen Zhang (IHEP) Positivity VBS October 31 7



Derivation

Outline

1 Derivation

2 Implication

3 Conclusion

Cen Zhang (IHEP) Positivity VBS October 31 8



Derivation

Positivity approach

First established in [A. Adams et al. JHEP ’06]: dispersion relation + optical
theorem, forward 2-to-2 scattering.

Non-forward generalization: [C. de Rham et al. Phys.Rev.D ’17], [C. de Rham et
al. JHEP ’18]

Application in collider pheno:

I ZZ and Zγ: [B. Bellazzini and F. Riva ’18]

I Implications in Higgs physics under ceratin assumptions:
[I. Low et al. ’09] [A. Falkowski et al. ’12]

In general the approach has strong implication on SMEFT dim-8
operators, which are important for the interpretation of VBS, so we
should understand the constraints.
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Derivation

Analytic dispersion relation

As an simplified version: consider the forward scattering (t = 0) of two
identical particles with mass m, with possible heavy new physics.

(see [C. Cheung and G. N. Remmen ’16] for a quick overview)

If the UV completion exists, the amplitude M(s, t = 0)

I is analytic and

I satisfies Froissart unitarity bound M(s,0) ≤ O(s ln2 s).
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Derivation

Analytic dispersion relation

Consider the contour integral:

f =
1

2πi

∮
Γ

ds
M(s,0)

(s − µ2)3

Deform Γ to Γ′ and notice that boundary
contribution vanishes due to Froissart
bound:

f =
1

2πi

∮
Γ

ds
M(s,0)

(s − µ2)3 =
1

2πi

(∫ 0

−∞
+

∫ ∞
4m2

)
ds

DiscM(s,0)

(s − µ2)3

i.e. sum of residues at low energy =

discontinuity along +x axis + discontinuity along -x axis

Note that BSM (above Λ) enters the discontinuity, as poles (tree level) or
branch cuts (heavy loops).
Cen Zhang (IHEP) Positivity VBS October 31 11



Derivation

Derivation of positivity

discontinuity along ±x axis must positive, because of optical theorem (disc. = xsec >0)
(plus crossing symmetry for −x)

⇒ sum of residues at low energy is positive.

We started with the amplitude in the full theory, but have reached a conclusion that only involves
low energy, which can be computed in SMEFT:

sum of residues at low energy =
d2M(s, 0)

ds2
=
∑

i

c(8)
i xi +

∑
i,j

c(6)
i c(6)

j yi,j > 0

Conclusion: the above positivity condition must be satisfied, if

I SMEFT has a UV completion, that satisfies unitarity, Lorentz symmetry, is analytic.

I At low energy, the SMEFT is valid and tree level calculation is a good approximation,
which anyway need to be assumed in a real measurement.
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Derivation

Dim-6 contributions can be removed

∑
i

c(8)
i xi ≥ −

∑
i,j

c(6)
i c(6)

j yi,j

In general, we expect dim-6 to be better constrained by other processes.

But in any case, dim-6 doesn’t matter, because by explicit calculation the RHS is positive.

E.g. from WZ scattering:

R.H.S ∝ a2
3b2

3

[
e2CDW − s2

W c2
W CϕD − 4s3

W cW CϕWB

]2
+ 36(a1b1 + a2b2)2e2s2

W c2
W C2

W

and from WW :

R.H.S ∝ a2
3b2

3s2
W

(
e2CDB + c2

W CϕD

)2
+ e2c2

W [6(a1b1 + a2b2)sW CW + a3b3eCDW ]2

∑
i

c(8)
i xi ≥ −

∑
i,j

c(6)
i c(6)

j yi,j ≥ 0 or simply: ~c · ~xi ≥ 0
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Derivation

Explicitly:

Polarization matters. We will use

~a = (a1, a2, a3)

~b = (b1, b2, b3)

to denote the polarization of the two vector boson being scattered.
As an example, ZZ → ZZ gives the following constraint:

8a2
3b2

3 t4
W (FS,0 + FS,1 + FS,2) +

[
a2

3

(
b2

1 + b2
2

)
+
(

a2
1 + a2

2

)
b2

3

]
t2
W

(
−t4

W FM,3 + t2
W FM,5 − 2FM,1 + FM,7

)
+
[
(a1b1 + a2b2) 2 +

(
a2

1 + a2
2

)(
b2

1 + b2
2

)](
2t8

W FT ,9

+4t4
W FT ,7 + 8FT ,2

)
+ 8 (a1b1 + a2b2) 2

[
t4
W

(
t4
W FT ,8

+2FT ,5 + 2FT ,6) + 4FT ,0 + 4FT ,1] ≥ 0

Depending on ~a, ~b, there is a infinite number of constraints from ZZ . . .
Other constraints from W±Z , W±W±, W±W∓, W±γ, Zγ, γγ.
These are the key results of this work.
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Derivation

“Unitarity”

It is well-known that unitarity violation can be a problem
in SMEFT.

I In VBS, unitarization techniques are needed.
I However, here unitarity problem concerns only

the prediction of the SMEFT, and only signals the
breakdown of EFT.

Our bounds are derived from a different information,
i.e. the Froissart unitarity bound. This unitarity refers to
the behaviour of the UV theory at large energy.

I This is then connected to the IR (EFT) of the
theory by the dispersion relation

i.e. Unitarity in UV (full theory) ⇒ Positivy in IR (EFT)
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Implication

Example: simplified model

Consider the simplified model in [Brass, Fleper, Kilian, Reuter, Sekulla ’18]
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Implication

Example: simplified model
If we plug in the dim-8 coefficients into our positivity constraints, we see:

ZZ : (a1b1 + a2b2)2
(

s4
W FσB + 2c4

W FσW

)2
+ a2

3b2
3s4

W c4
W e−4F2

σH > 0

W±Z : a2
3b2

3F2
σH > 0

W±W± : (a1b1 + a2b2)2F2
σW +

[
(a1b1 + a2b2)FσW + a3b3s2

W e−2FσH

]2
> 0

W±W∓ : (a1b1 + a2b2)2F2
σW +

[
(a1b1 + a2b2)FσW − a3b3s2

W e−2FσH

]2
> 0

ZA : (a1b1 + a2b2)2
[
s2

W FσB − 2c2
W FσW

]2
> 0

WA : none

AA : (a1b1 + a2b2)2 (FσB + 2FσW )2
> 0

*up to factors of 2 that can be absorbed in the definitions of FσX

All inequalities are satisfied, as they are all sum of squares.

In a top-down approach, positivity is automatically true, in different models, different ways
— by asking for positivity, we are not restricting the UV models.

In a bottom-up approach, we can derive the same constraints, but without using model
details, and therefore we restrict the parameter space without losing model-independence.
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Implication

1D limits

Consider one operator at a time:

fS,0 fS,1 fS,2 fM,0 fM,1 fM,2 fM,3 fM,4 fM,5
+ + + 7 – O – O 7

fM,7 fT ,0 fT ,1 fT ,2 fT ,5 fT ,6 fT ,7 fT ,8 fT ,9
+ + + + 7 + 7 + +

+: positive –: negative
O: free 7: forbidden

Note there are coefficients that are not individually allowed.

I E.g. FT 5. In the simplified model FT 5 ∝ FσW FσB, cannot take
nonzero value independent of FT0 ∝ F 2

σW and FT8 ∝ F 2
σB.
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Implication

1D limits: EXP
Individual limits on transversal coefficients Individual limits on mixed coefficients

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC#aQGC_Results
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Implication

1D limits: EXP+positivity

Transversal coefficients, positivity Mixed coefficients, positivity
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Implication

2D limits: Longitudinal case
As a first example, consider OS,0 and OS,1.

Coef. vector: ~c ≡ (FS,0,FS,1). Positivity: ~c · ~xi ≥ 0.
There are 3 useful constraints, from WW , ZZ , WZ scattering

~xWZ = a2
3b2

3(1, 0), ~xWW = a2
3b2

3(2, 1), ~xZZ = a2
3b2

3(1, 1)

~x and corresponding exclusion
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Note that ~xWW is between ~xZZ and
~xWZ , so positivity on ~xWW does not
give new independent information.

In general: if ~x is a
positive linear combination of a

set of ~xi , i.e.

~x = αi~xi , αi ≥ 0 ∀ i

Then positivity along ~x does not
lead to additional exclusion.
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Implication

2D limits: longitudinal case
As a first example, consider OS,0 and OS,1.

Coef. vector: ~c ≡ (FS,0,FS,1). Positivity: ~c · ~xi ≥ 0.
There are 3 useful constraints, from WW , ZZ , WZ

~xWZ = a2
3b2

3(1, 0), ~xWW = a2
3b2

3(2, 1), ~xZZ = a2
3b2

3(1, 1)

~x and corresponding exclusion
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Combined with EXP
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Implication

2D limits: longitudinal and transversal case
As a second example, consider OS,0 and OT ,0.

The constraint from WW is

~xWW = (a2
3b2

3s4
W , 2(a1b1 + a2b2)2)

Depending on the chosen ~a, ~b, ~xWW can take any direction in the first quadrant.

~x can vary in the 1st quadrant
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Implication

2D limits: mixed case
As a third example, consider OM,0 and OM,1.

The most useful constraint is from WW

~xWW = −
(

4(a1b1 + a2b2)a3b3, (a2
1 + a2

2)b2
3 − (a1b1 + a2b2)a3b3 + (b2

1 + b2
2)a2

3

)
Varies between (−4,−1) and (4,−3).

~x sits between red and blue arrows
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Implication

2D limits: mixed case
As a third example, consider OM,0 and OM,1.

The most useful constraint is from WW

~xWW = −
(

4(a1b1 + a2b2)a3b3, (a2
1 + a2

2)b2
3 − (a1b1 + a2b2)a3b3 + (b2

1 + b2
2)a2

3

)
Varies between (−4,−1) and (4,−3).

~x sits between red and blue arrows
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=-
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Corresponding exclusion
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Implication

2D limits: summary

In 2D case, constraints are given by minimally two key vectors.

FS0 − FS1:

~xWZ = (1, 0)

~xZZ = (1, 1)

FS0 − FT0:

~xWW (trans.) = (0, 1)

~xWW (long.) = (1, 0)

FM0 − FM1:

~xWW (~a ‖ ~b) = (−4,−1)

~xWW (~a‖̄~b) = (4,−3)

What happens in higher dimension parameter space?
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Implication

3D limits
As a last example, consider OM,0, OM,1 and OM,5.

Scan the polarization space by randomly generating ~a and ~b.

~x within the pyramid formed by other ~xi does not give new info!
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Implication

3D limits

How to find the “key vectors” that
characterize the bounds in general:

Scan all possible polarizations ~a, ~b.

Project to a 2D plane (fM0 − fM5).

Take the endpoints of ~x .

Find the convex hull of the set of
points.

The vertices corresponds to the key
vectors:

~xWγ = (0,−2, 1),

~xZγ = (0,−2,−1),

~xWW (~a ‖ ~b) = (−4,−1, 0),

~xWW (~a‖̄~b) = (4,−3, 0).

~xi projected on 2D plane
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Implication

3D limits

Allowed region is given by

−2FM1 + FM5 ≥ 0,

−2FM1 − FM5 ≥ 0,

−4FM0 − FM1 ≥ 0,

4FM0 − 3FM1 ≥ 0.

I Note that

FM5 ∈ [−2|FM1|, 2|FM1|],

FM0 ∈ [−
3
4
|FM1|,

1
4
|FM1|]

In principle same approach
applies for higher-D case: the
problem is equivalent to
finding a D-1 dimensional
convex hull.

3D allowed region given by a pyramid
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Recall:
fM,0 fM,1 fM,2 fM,3 fM,4 fM,5
7 – O – O 7
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Implication

Volume in full parameter space

When all 18 parameters are turned on, how much of the parameter space is
excluded by positivity?

By brutal force, randomly through points on a
18D sphere, uniformly distributed, and count
how many of the them fall within constraints
for all polarizations.

We find that only ∼ 3% parameter space is
left.
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Implication

How does positivity affect future experimental search?

We don’t know, but some thoughts. . .

It might help MC generation? Because less space need to be scanned?
Does it help to move to higher dim? (i.e. towards global EFT fit)

I 2D/3D benchmarks?
I Or simply a MATHEMATICA script. . .

Does it provide enough info to support a “guided search”? Instead of
blindly searching for BSM in 18D space, can we make use of the fact
that we know BSM only exists in the 3% parameter space?

Presentation, e.g. 1D limits should be presented in a more reasonable
form.
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Conclusion

Conclusion

Dim-8 aQGC operator coefficients satisfy a set of positivity constraints, if
they are generated by a UV completion.

They have strong implication, e.g. 18D parameter space reduced to 3%,
independent of experimental precision.

The shape of the allowed parameter space shows interesting structure.

They should be taken into account for future aQGC studies.
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Conclusion

Thank you!
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