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The Antiproton Decelerator (AD)
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Antiproton Decelerator (AD)

C = 182.5 m
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Antiproton Decelerator (AD)

C = 182.5 m

ELENA

C = 30.4 m

ELENA
• Reduce the energy of antiprotons coming 

from AD from 5.3 MeV to 100 keV
• Should allow the experiments to trap

( ~ x 100) more antiprotons 
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AD beam and cycle parameters

AD beam parameters

Beta (0.97 - 0.11) c

Cycle ~110 s 

Frev (1.59 - 0.17) MHz

N particles (5 - 1) x 107

Current (12 - 0.1) μA
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Beam intensity monitoring

DCCT:
Insufficient resolution: > 1µA

Fast BCTs:
Limited to bunched phases

Schottky monitor:
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Coasting beam

plateaus

Un-bunched:
time resolution of ~ 1𝑠
accuracy error > 10%
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Beam intensity monitoring

DCCT:
Insufficient resolution: > 1µA

Fast BCTs:
Limited to bunched phases

Schottky monitor:
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Bunched beam

ramps

Bunched:
time resolution of 20 𝑚𝑠
accuracy error of <10%
Bunch shape dependent
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Specifications for new monitor

Current/intensity measurement:
• Measure beam: Bunched and debunched

• Current resolution: < 10 nA

• Intensity resolution: < 5 x 105 charges

• Bandwidth: DC - 1 kHz

Operations ready:
• Integrated acquisition: FESA based

• Automatic operation: synchronized with AD cycle

Requirements for the cryostat
• “Zero-boil off” using a pulse tube cryocooler as He 

reliquefier unit

• Stand-alone long term availability

Collaboration:
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Overview of the CCC
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CCC functioning overview

Magnetic shield:

• Suppresses all field components except azimuthal beam 

component

Pickup coil:
• Soft ferromagnetic material with high-permeability 

concentrates flux

Flux transformer:
• Couples magnetic flux (down to DC) to SQUID 

SQUID + Electronic readout:
• Superconducting QUantum Interference Devices

• Measures the magnetic field induced in the SQUID’s input coil
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SQUID’s in a nutshell

Superconductors:
• Zero resistance to electrical currents

• Magnetic field expulsion from bulk material

• Conservation of magnetic flux in closed loops

Current carriers are bounded states of two electrons (Cooper pairs)
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From: https://dc.edu.au/hsc-physics-ideas-to-implementation/

Copper pair

30/11/2018



Ic

SQUID’s in a nutshell

13

Josephson junction:
• Mixed superconducting and

resistive current flow

Tunneling of electron-pairs
allows for a superconducitng

current through a barrier

Tunneling of electrons resulting
from pair break-up approximates

an ohmic current **

*

* Only for certain parameters of Josephson
junction. In general I-V curve is hysteretic.
** For small V
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SQUID’s in a nutshell

14

dc-SQUID
• Two Josephson junctions in parallel
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2Ic

Ibias

• No external flux applied: 

• Applying external flux: 

• Constant magnetic flux threading closed loops:



SQUID’s in a nutshell
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SQUID’s in a nutshell
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SQUID devices

𝑉𝑆𝑄𝑈𝐼𝐷𝜑𝑆𝑄𝑈𝐼𝐷

• SQUID’s are very sensitive magnetometers

• Periodic voltage-flux transfer function with 
period 𝝋0 (flux-quanta) 

• Voltage output of the order of ~10 𝜇𝑉

• Periodic transfer function strongly limits its 
dynamic range
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SQUID devices

Constant 
Working Point

𝜑𝐼𝑏

𝑉𝑆𝑄𝑈𝐼𝐷

• Linearization of the transfer function using a 
feedback flux lock loop (FLL)

• Total flux in SQUID is kept constant at a fixed
working point

• Possible to resolve variations of 10−6𝜑0

• Dynamic range increased to up to 120 dB
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SQUID devices

𝝋𝟎

𝜑𝐼𝑏

𝑉𝑆𝑄𝑈𝐼𝐷

• Flux jumps of working point may occur

• If feedback loop is too slow to track input signal

• If too much flux noise is coupled to the SQUID

• Increasing FLL bandwidth makes it faster, but also 
adds more flux noise

• Necessary to limit slew-rate of coupled signal to 
avoid flux-jumps
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SQUID devices

𝜑𝐼𝑏

𝑉𝑆𝑄𝑈𝐼𝐷

• Flux jumps of working point may occur

• If feedback loop is too slow to track input signal

• If too much flux noise is coupled to the SQUID

• Increasing FLL bandwidth makes it faster, but also 
adds more flux noise

• Necessary to limit slew-rate of coupled signal to 
avoid flux-jumps

𝒅𝝓𝒔

𝒅𝒕
≤ 𝟏…𝟓𝑴𝝋𝟎/𝒔
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Adaptation of the CCC to the AD 
beam
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AD beam slew-rate

φ
𝐼𝑏𝑒𝑎𝑚

= 10 φ0/μA 

Filtering Slew-rate

None 86 Gφ0/s 

Core 
permeability

1.2 Gφ0/s 

Flux slew-rate at SQUID
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Filtering beam current signal

SC

Low pass filtering to 
reduce signal slew-rate

Maximum possible
bandwidth
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CCC components

Magnetic shield had previously been fabricated by

GSI and Univesity Jena as prototype for FAIR 
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CCC components
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CCC components

Magnicon SQUID and FLL electronics system
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Cryostat design
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Cryostat design

• New custom cryostat was designed and
fabricated to host CCC monitor

• Insulating ceramic integrated to prevent mirror
currents from shielding the beam signal

• Low heat-load to allow stand-alone operation

• Cooling power entirely provided by pulse-tube 
cryocooler

• HV Support designed to mitigate vibration
transmission

VV: Vacuum Vessel
TS: Thermal Shield
HV: Helium Vessel
BC: Bayonet Connection
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Cryostat design

LHe vessel support Closed circuit cooling

of termal shield
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Cryostat installed in AD
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CCC Acquisition and Control
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Acquisition and controls

FLL Electronics
• Magnicon (20MHz)
• Settings:

 RFLL = 1 kOhm
 GBW = 1.04 GHz

Advantech
Serial Server

Calibration
Source

Tr
ia

x

VME Crate
1. CPU L866
2. CTRV timing
3. VD80 ADC

 16 channels
 16 bit
 +/- 10V
 800kOhm
 Isolated diff. inputsRS-232

Ethernet

NIM Crate
1. AD B-field cycle
2. Current/Nparticlenor

malization

Acquisition / Controls
• VME architecture
• FESA SW + Expert GUI
• Signal acquisition at end of cycle and on-line
• Control of multiple SQUID/FLL parameters

Low-pass
filter
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AD cycle synchronization
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FESA Class

σtotal = 5.8 nA
BEAM CURRENT [uA]

NUMBER OF PARTICLES

AD MAGNETIC CYCKE
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Expert GUI
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Beam measurements and
performance
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Beam current measurement

σ = 5.8 nA

• Resolution within < 10 nA

(with cryocooler and

vacuum pumps running) 

• Flux jump at injection

causes loss of baseline

• SQUID/FLL stable

throughout the rest of the

cycle
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Beam intensity measurement

σ = 1.2x104

• Baseline corrected at the

end of the cycle

• Beam intensity calculated

by normalizing against fRev

• Intensity resolutions at

low-energy ~105 charges
σ = 1.3x105
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Comparison with Schottky monitor
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Comparison with Schottky monitor
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Comparison with Schottky monitor
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ADB. Lefort Ref: https://indico.cern.ch/event/641870/contributions/2619208/
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Performance analysis

• Measurement resolution

• Computed as the signal standard deviation

in 1s interval

• Analysis of ~25000 cycles

• With cryostat insulation vacuum pumps

on/off

• Corresponds to resolution in terms of 

number of particles of:

• N = (1-3) x 104   at injection energy

• N = (1-3) x 105   at ejection energy

Current resolution
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Performance analysis

Baseline variation

• Slower baseline drifts are 

dominant measurement error

• These are mainly caused by

helium gas pressure variations

• Additionally perturbation induced

by cycling the acccelerator

• Baseline drift obtained from

cycles with no injected beam
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Extra: Noise performance improvements

σ = 5.5 nA

Perturbation from magnetic cyclePerturbation from cryocooler
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Conclusions

• Measurement noise performance under initial specification

• Able to stably cope with AD bunched beams (except at injection)

• Very good immunity to mechanical vibrations 

• Cryogenic system enables “long” term operations (~3/4 month)

• Assessed long term stability over entire year run 

• Automatic system control with FESA class and expert GUI

On-going work

• Investigate source of flux jump at injection

• Improve availability of cryogenic system

• Mitigate perturbations by controlling and stabilizing cryostat pressure

• Proposal of a new CCC monitor for the ELENA
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Backup
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Coupling circuit low-pass filter

Filtering Slew-rate

Core permeability
+ RC-parallel

0.97 Mφ0/s

Additional flux noise at low freq: 
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Calibration vs. Temperature

0.3 (nA/φ0) / K

Ib = 10uA
σ(Ib) < 10nA

δT < 300 mK
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Flux jumps
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Cryogenic availability
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2016

• Started actively pumping the
insulation vacuum

• Air contamination at end of year

2017

• Power glitch stopped turbo pump
that compromised vacum

• Still possible to work with gas
• ~1 month unavailable

2018

• New controls for vacuum pumps and
vacuum valves

• New remotely controlled gas flow-valve
was installed

• ~2 month unavailable

30/11/2018



Stabilize cryostat operation
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Stabilize cryostat pressure
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Immunity to mechanical vibrations

Main vibration modes as 
captured by SQUID:

• 65 Hz
• 115 Hz
• 78 Hz
• 5 Hz
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