Coupling between FLUKA and BIG2

Workshop on coupling simulation of beam impact on accelerator components

Florian Burkart (CERN -TE - MPE and ABT)

A bit of history:

- Before 2011: Collaboration between N. Tahir (GSI), R. Schmidt and Juan Sancho.
- First LHC related simulations, first LPROT (HiRadMat - copper cylinder experiment) simulations
- 2011: I joint and Juan left the team.
- LPROT simulations with real beam parameters and bunch / bunch train spacing.
- First FCC graphite beam dump simulations
- First FCC water beam dump simulation
- 2017: I left to DESY.
- Very fruitful collaboration: many journal papers (Physics of plasma, Journal of applied physics, Phys. Rev. E, High energy density physics, etc...) , 2 PhD theses.

Coupling between FLUKA and BIG2

- Alternating simulation with FLUKA and BIG2 (N. Tahir, GSI).
- Energy deposition of 440 GeV protons in the target is calculated using FLUKA code.
- Energy deposition data is used as input to a two-dimensional hydrodynamic code BIG2, to study the thermodynamic and the hydrodynamic response of the target due to the beam impact.
- Density distribution from BIG2 used as input for next FLUKA iteration.

General routine:

1. FLUKA simulation with the required beam and material paramters.
2. Get out an Energy deposition ($\mathrm{GeV} / \mathrm{cm}^{3} / \mathrm{p}$)
3. Data - Ordering with MATLAB script.
4. Energy deposition map to N. Tahir
5. BIG2 is running until density change $\sim 15 \%$, otherwise unrealistic fluctuations.
6. Density map.
7. Translation into FLUKA input file via python script.
8. Start new FLUKA simulation.
9. ... repeat until density decrease moves with constant speed
10. Extrapolation to final number of bunches.

3.) Data-ordering (MATLAB), BIG2 needs a special data format

"R - Z binning n. 1 ""EdepGr "", generalized particle n. 208"
R coordinate: from $0.0000 \mathrm{E}+00$ to $7.000 \mathrm{E}+00 \mathrm{~cm}, 350$ bins ($20000-02 \mathrm{~cm}$ wide)
Z coordinate: from $0.0000 \mathrm{E}+00$ to $1.4000 \mathrm{E}+03 \mathrm{~cm}, 560$ bins ($2.5000 \mathrm{E}-00 \mathrm{~cm}$ wide)
axis coordinates: $X=0.0000 \mathrm{E}+00, \mathrm{Y}=0.0000 \mathrm{E}+00 \mathrm{~cm}$
Data follow in a matrix $A\left(i r_{\text {s iz }}\right)$, format (1(5x,1p,10(1x,e11.4)))

accurate deposition along the tracks requested									
$2.5471 \mathrm{E}-01$	$2.0675 \mathrm{E}-01$	$1.3380 \mathrm{E}-01$	$6.8181 \mathrm{E}-02$	$2.8234 \mathrm{E}-02$	$1.1280 \mathrm{E}-02$	4.6450E-03	$2.6108 \mathrm{E}-03$	$1.7670 \mathrm{E}-03$	$1.3482 \mathrm{E}-03$
$1.0508 \mathrm{E}-03$	8.8951E-04	7.3969E-04	$6.3844 \mathrm{E}-04$	$5.4122 \mathrm{E}-04$	5.0386E-04	4.1847E-04	$3.8356 \mathrm{E}-04$	3.4276E-04	$2.9804 \mathrm{E}-04$
$2.8488 \mathrm{E}-04$	$2.4899 \mathrm{E}-04$	$2.1640 \mathrm{E}-04$	$1.9751 \mathrm{E}-04$	$1.8941 \mathrm{E}-04$	$1.7323 \mathrm{E}-04$	$1.6265 \mathrm{E}-04$	$1.4157 \mathrm{E}-04$	$1.4181 \mathrm{E}-04$	$1.2728 \mathrm{E}-04$
$1.2089 \mathrm{E}-04$	$1.1155 \mathrm{E}-04$	$1.0191 \mathrm{E}-04$	9.7171E-05					7.2212E-05	$6.8329 \mathrm{E}-05$
6.5626E-05	$6.2544 \mathrm{E}-05$	$6.0172 \mathrm{E}-05$	$5.9711 \mathrm{E}-05$	Energy deposition (GeV/g)				$4.6380 \mathrm{E}-05$	$4.6545 \mathrm{E}-05$
4.2034E-05	$3.9401 \mathrm{E}-05$	$3.9810 \mathrm{E}-05$	$3.7226 \mathrm{E}-05$					$3.3508 \mathrm{E}-05$	3.2471E-05
$3.3768 \mathrm{E}-05$	$3.2181 \mathrm{E}-05$	$2.8246 \mathrm{E}-05$	$2.8676 \mathrm{E}-05$					$2.3800 \mathrm{E}-05$	2.2380E-05
$2.1696 \mathrm{E}-05$	$2.2593 \mathrm{E}-05$	$2.3818 \mathrm{E}-05$	$2.1824 \mathrm{E}-05$	¢.JJJTL U	¢.くUUJレ	¢. ${ }^{\text {duJJL UJ }}$	\#.Juvut uJ	$1.9931 \mathrm{E}-05$	$1.9082 \mathrm{E}-05$
$2.1592 \mathrm{E}-05$	$2.0252 \mathrm{E}-05$	$1.7221 \mathrm{E}-05$	$1.7888 \mathrm{E}-05$	$1.7436 \mathrm{E}-05$	$1.6936 \mathrm{E}-05$	$1.8236 \mathrm{E}-05$	$1.8319 \mathrm{E}-05$	$1.7373 \mathrm{E}-05$	$1.7817 \mathrm{E}-05$
$1.6226 \mathrm{E}-05$	$1.5769 \mathrm{E}-05$	$1.4236 \mathrm{E}-05$	$1.3762 \mathrm{E}-05$	$1.4343 \mathrm{E}-05$	$1.3806 \mathrm{E}-05$	$1.3537 \mathrm{E}-05$	$1.3483 \mathrm{E}-05$	$1.2465 \mathrm{E}-05$	$1.2398 \mathrm{E}-05$
$1.3554 \mathrm{E}-05$	$1.2178 \mathrm{E}-05$	$1.2167 \mathrm{E}-05$	$1.1776 \mathrm{E}-05$	$1.2216 \mathrm{E}-05$	$1.3085 \mathrm{E}-05$	$1.2098 \mathrm{E}-05$	$1.1895 \mathrm{E}-05$	$1.0914 \mathrm{E}-05$	$1.1916 \mathrm{E}-05$
$1.1660 \mathrm{E}-05$	$1.1858 \mathrm{E}-05$	$1.1498 \mathrm{E}-05$	$1.1307 \mathrm{E}-05$	$1.2206 \mathrm{E}-05$	$1.1197 \mathrm{E}-05$	$1.1630 \mathrm{E}-05$	$1.0860 \mathrm{E}-05$	$1.0064 \mathrm{E}-05$	$1.0410 \mathrm{E}-05$
9.6871E-06	$1.0607 \mathrm{E}-05$	9.7266E-06	$1.0609 \mathrm{E}-05$	9.9209E-06	9.8223E-06	8.9810E-06	8.9842E-06	$8.7194 \mathrm{E}-06$	8.9270E-06
8.2834E-06	8.3089E-06	8.4663E-06	8.6177E-06	8.9874E-06	8.1413E-06	8.8965E-06	$8.0455 \mathrm{E}-06$	7.8210E-06	$7.3202 \mathrm{E}-06$
7.6624E-06	$7.8363 \mathrm{E}-06$	7.9165E-06	$8.1760 \mathrm{E}-06$	$7.7279 \mathrm{E}-06$	7.3262E-06	7.2527E-06	$6.9414 \mathrm{E}-06$	$7.4218 \mathrm{E}-06$	$7.2582 \mathrm{E}-06$

MATLAB script

From FLUKA

Energy deposition

BIG2

7) Translation into FLUKA input file (1/2) - MATLAB

 ddist $=(d 1300 \mathrm{~ns}(56001:$ end, 1:3)); \%Copper wegDuring the water simulations, we had some artifacts from previous simicillt tion in the density map from BIG2 (empty regions, first third of the target in the second third of the data set) \rightarrow re-ordering with

scheck
plot(ddist(:, 2), 'x')
8%
min_700 $=\min ($ ddist $(:, 3))$
$\max -700=\max ($ ddist $(:, 3))$
8\% s.8iew (3)
88
왕홍re-order Data
\square for $i=1: 351$;
density\{i\}=ddist(i:351:end,:);
end
$\mathrm{V}=$ cell2mat((fliplr(density)));
$\mathrm{x}=\mathrm{V}$ (:, 1:3: end);
s1=reshape ($\mathrm{x},[196560,1]$);
7) Translation into FLUKA input file (2/2) - python (~ 800 lines of code)

```
inp_file = density.txt
template_inp = Cylinder_template_new.inp
template_inp = Cylinder_t
outputfile = Cutarget.inp _
config_file = rhomap_conf_Copper02mm.cfg
outputfilemerge = CutargetMerge.inp
[target]
a = 63.546
rmin = 0.0
zmax = 150.0
rbins = 400.
zmin = 0.0
zmin = material = cOPPER
material =
rmax = 4.0
zbins = 1000
rho = 8.96
z = 29.0
[algorithm]
maxreg = 100
regthreshold = 0.01
numparticles = 2000
[rhomap_format]
Nz = 374
Nr = 2000
NumberRegions = 3
RegionOrder = [2,1,3]
NzR = [12,62,300]
NrR = [2000,2000,2000]
NzbR = [0.0417,0.0403,0.04]
NrbR = [1,1,1]
[beam]
energy = 440.0
fwhmy = .471
distribution = ga
particle = PROTON

\section*{Region definition in FLUKA}
\begin{tabular}{|c|c|c|c|}
\hline BLǨHOLE & 5 +SPHBLK & \multicolumn{2}{|l|}{-sphVac} \\
\hline SURVAC & 5 +SPHVAC & -( +CILZ & 43 +PLAZ008 -PLAZ000 \\
\hline REG00001 & 5 +CILZ001 & +PLAZ001 & -PLAZ000 \\
\hline REG00002 & 5 +CILZ001 & +PLAZ002 & -PLAZ001 \\
\hline REG00003 & +CILZ001 & +PLAZ003 & -PLAZ002 \\
\hline REG00004 & 5 +CILZ001 & +PLAZ004 & -PLAZ003 \\
\hline REG00005 & 5 +CILZ001 & +PLAZ005 & -PLAZ004 \\
\hline REG00006 & +CILZ001 & +PLAZ006 & -PLAZ005 \\
\hline REG00007 & 5 +CILZ001 & +PLAZ007 & -PLAZ006 \\
\hline REG00008 & 5 +CILZ001 & +PLAZ008 & -PLAZ007 \\
\hline REG00009 & 5 +CILZ002 & -CILZ001 & +PLAZ001 -PLAZ000 \\
\hline REG00010 & 5 +CILZ002 & -CILZ001 & +PLAZ002 -PLAZ001 \\
\hline REG00011 & 5 +CILZ002 & -CILZ001 & +PLAZ003 -PLAZ002 \\
\hline REG00012 & 5 +CILZ002 & -CILZ001 & +PLAZ004 -PLAZ003 \\
\hline REG00013 & 5 +CILZ002 & -CILZ001 & +PLAZ005 -PLAZ004 \\
\hline REG00014 & 5 +CILZ002 & -CILZ001 & +PLAZ006 -PLAZ005 \\
\hline REG00015 & 5 +CILZ002 & -CILZ001 & +PLAZ007 -PLAZ006 \\
\hline REG00016 & 5 +CILZ002 & -CILZ001 & +PLAZ008 -PLAZ007 \\
\hline REG00017 & 5 +CILZ003 & -CILZ002 & +PLAZ001 -PLAZ000 \\
\hline REG00018 & 5 +CILZ003 & -CILZ002 & +PLAZ002 -PLAZ001 \\
\hline REG00019 & 5 +CILZ003 & -CILZ002 & +PLAZ003 -PLAZ002 \\
\hline REG00020 & 5 +CILZ003 & -CILZ002 & +PLAZ004 -PLAZ003 \\
\hline REG00021 & 5 +CILZ003 & -CILZ002 & +PLAZ005 -PLAZ004 \\
\hline REG00022 & 5 +CILZ003 & -CILZ002 & +PLAZ006 -PLAZ005 \\
\hline REG00023 & 5 +CILZ003 & -CILZ002 & +PLAZ007 -PLAZ006 \\
\hline REG00024 & 5 +CILZ003 & -CILZ002 & +PLAZ008 -PLAZ007 \\
\hline REG00025 & 5 +CILZ004 & -CILZ003 & +PLAZ001 -PLAZ000 \\
\hline REG00026 & 5 +CILZ004 & -CILZ003 & +PLAZ002 -PLAZ001 \\
\hline REG00027 & 5 +CILZ004 & -CILZ003 & +PLAZ003 -PLAZ002 \\
\hline REG00028 & 5 +CILZ004 & -CILZ003 & +PLAZ004 -PLAZ003 \\
\hline REG00029 & 5 +CILZ004 & -CILZ003 & +PLAZ005 -PLAZ004 \\
\hline REG00030 & 5 +CILZ004 & -CILZ003 & +PLAZ006 -PLAZ005 \\
\hline REG00031 & 5 +CILZ004 & -CILZ003 & +PLAZ007 -PLAZ006 \\
\hline REG00032 & 5 +CILZ004 & -CILZ003 & +PLAZ008 -PLAZ007 \\
\hline REG00033 & 5 +CILZ005 & -CILZ004 & +PLAZ001 -PLAZ000 \\
\hline REG00034 & 5 +CILZ005 & -CILZ004 & +PLAZ002 -PLAZ001 \\
\hline REG00035 & 5 +CILZ005 & -CILZ004 & +PLAZ003 -PLAZ002 \\
\hline REG00036 & 5 +CILZ005 & -CILZ004 & +PLAZ004 -PLAZ003 \\
\hline REG00037 & 5 +CILZ005 & -CILZ004 & +PLAZ005 -PLAZ004 \\
\hline REG00038 & 5 +CILZ005 & -CILZ004 & +PLAZ006 -PLAZ005 \\
\hline REG00039 & 5 +CILZ005 & -CILZ004 & 4 +PLAZ007 -PLAZ006 \\
\hline REG00040 & 5 +CILZ005 & -CILZ004 & +PLAZ008 -PLAZ007 \\
\hline REG00041 & 5 +CILZ006 & -CILZ005 & +PLAZ001 -PLAZ000 \\
\hline REG00042 & 5 +CILZ006 & -CILZ005 & +PLAZ002 -PLAZ001 \\
\hline REG00043 & 5 +CILZ006 & -CILZ005 & +PLAZ003 -PLAZ002 \\
\hline RFgianasa & 5 +¢тı 7аик & -¢ti 7aas & +PI A7004 \(^{\text {-PI }}\) A7003 \\
\hline
\end{tabular}

\section*{Some comments:}
- Setting up the right FLUKA binning parameters (balance between simulation time and precision) and routine for a new simulation takes time ( \(\sim 1-1.5\) month).
- FLUKA ( \(\sim 1\) week) and BIG2 (couple of days) simulations need time.
- Data manipulation in between FLUKA and BIG2 can be done within 2 h .```

