

Benchmarking simulation of hydrodynamic tunneling against HiRadMat-12 coupling FLUKA and Autodyn

Yuancun NIE
TE-MPE-PE, CERN

Acknowledgments:
L. Mettler, C. Fichera, F. Carra, A. Bertarelli,
J. Blanco Sancho, R. Schmidt, N. Tahir, F. Burkart, D. Wollmann, etc

Outline

I. Motivation
II. Benchmarking study: beam and target parameters
III. Simulation procedure
IV. Results and comparisons
V. Summary

I. Motivation: comparison between codes

HiRadMat-12 experiment at SPS

Damage of a beam (144b) with an energy of 1.5 MJ (Hydrodynamic tunneling)
[N.A. Tahir, et al., Phys. Rev. E 2014; F. Burkart, et al., J. Appl. Phys. 2015]

[Y. Nie, et al., IPAC 2018; Phys. Rev. Accel. Beams, under review]

II. Benchmarking study: beam and target parameters (HiRadMat-12)

Upper left: three Cu targets (cylinder $R=4 \mathrm{~cm}, L=150 \mathrm{~cm}$)
Upper right: front and back faces of cylinders 1-3 (a-c) of target 3
Lower: top cover of the three targets (up to down: target 3, 2, 1)
R. Schmidt, et al., Phys. Plasmas 2014 http://dx.doi.org/10.1063/1.4892960 N.A. Tahir, et al., PRE 2014
https://doi.org/10.1103/PhysRevE.90.063112
F. Burkart, et al., J. Appl. Phys. 2015 http://dx.doi.org/10.1063/1.4927721

II. Benchmarking study: beam and target parameters (HiRadMat-12)

Proton energy: 440 GeV
Transverse beam size: 0.2 mm
Bunch intensity: 1.5×10^{11}
Bunch length: 0.5 ns
Bunch spacing: 50 ns
$>$ For Target 3, the protons were delivered in sets of $\mathbf{3 6}$ bunches each, separation between two neighboring bunch packets was $\mathbf{2 5 0} \mathbf{~ n s}$, total ($36 \times 4=144$ bunches) beam length ~7750.5 ns
$>$ The time structure was considered in the simulation

III. Simulation procedure: workflow

iterative run till the end of beam impact

III. Simulation procedure: comparison

Hydrocode	EOS	Strength model	Failure model	Mesh
BIG2	Semi-empirical	Prandtl-Reuss model		Eulerian
Autodyn	SESAME (LANL)	Empirical J-C	Empirical J-C	Lagrangian

$>$ For Autodyn, analytical or tabular EOS/other models/other mesh can be adopted on a case-by-case basis, according to beams and materials.

III. Simulation procedure: beam heated area (predicted by FLUKA)

$>$ Static approximation: linear scaling from one proton ($\mathrm{GeV} / \mathrm{g} / \mathrm{p}$) to 144 bunches (kJ / g)
$>$ Two black curves, upper: melting contour line; down: boiling contour line

III. Simulation procedure: target modelling in FLUKA

III. Simulation procedure: target modelling in FLUKA

(Maximum number of regions: 20 000)

III. Simulation procedure: target modelling in FLUKA

(Maximum number of regions: 20 000)

III. Simulation procedure: difference

> Compared to previous coupling between FLUKA and BIG2 [J. Blanco Sancho, Ph.D thesis, EPFL Lausanne, 2014], the basic principle is similar, but the implementation is different.
a) We don't define discrete density levels in each iteration. From the accuracy point of view, 100-200 predefined (fixed) densities are sufficient.
> Data analysis and FLUKA modelling are hence simplified, since for each density, different kinds of material \& compound have to be defined.
b) Previous scripts assign one material to one region, so the total number of regions is limited to be less than ~ 700. We are able to assign one material to different regions, so that the region number could be up to 20000 (by default).
> Regions with same/close density may be merged (Boolean Calculation) to save simulation time, but we are more flexible (merging regions takes time as well).

III. Simulation procedure: iteration steps

Proton beam (144 bunches) moving to the target

$>$ Bunch length 0.5 ns is not shown in the picture
$>$ In total, 4 packets, each consists of 36 bunches
$>$ The beam pulse length is $35 * 50 * 4+250 * 3=7750 \mathrm{~ns}$ for 144 bunches (target 3)
$>$ The density drops 13% in max. after the first 12 bunches $\rightarrow \mathbf{1 2 *} \mathbf{1 2}$ bunches

IV. Results and comparisons: FLUKA maps [GeV/(g p)]

$>2 \mathrm{D}$ dose distribution for bunches $1-12$, using density at $t=0 \mathrm{~ns}$

IV. Results and comparisons: FLUKA maps [GeV/(g p)]

$\rightarrow 2 \mathrm{D}$ dose distribution for bunches 37-48, using density at $t=2000 \mathrm{~ns}$

IV. Results and comparisons: FLUKA maps [GeV/(g p)]

$\rightarrow 2 \mathrm{D}$ dose distribution for bunches 73-84, using density at $t=4000 \mathrm{~ns}$

IV. Results and comparisons: FLUKA maps [GeV/(g p)]

$>$ 2D dose distribution for bunches 109-120, using density at $t=6000 \mathrm{~ns}$

IV. Results and comparisons: mechanical responses to the first 36 bunches

Tunneling effect during proton-copper interactions for the first 36 bunches

IV. Results and comparisons: temperature and density after beam impact

Temperature after beam impact, at $t=20 \mu \mathrm{~s}$

Density after beam impact, at $t=20 \mu \mathrm{~s}$

Temperature vs. target axis at different times

Density vs. target axis at different times

IV. Results and comparisons: comparison after 144 bunches

$>$ Difference of the order of 10%, which is acceptable, considering different:

1) FLUKA scoring; 2) Iteration step; 3) EOS; 4) Strength/Failure model; 5) Mesh type and size

IV. Results and comparisons: comparison of melting depth

Bunch number	FLUKA (static)	Measurement	Coupling BIG2 (melting platform)	Coupling Autodyn (melting platform)
108	63.5 cm	79.5 cm	$74-81 \mathrm{~cm}$	$77-83 \mathrm{~cm}$
144	67.5 cm	85 cm	$85-92 \mathrm{~cm}$	$89-95 \mathrm{~cm}$

$>$ FLUKA-Autodyn results agree with that of FLUKA-BIG2 and test (difference $\sim 10 \%$)
$>$ A numerical error of $20-30 \%$ should be considered, arising from:

1) FLUKA statistic error: $<5 \%$
2) Limited iteration step (\#bunch): defined by a density drop of $10-15 \%$ (not e.g. $1 \% \ldots$)
3) Error from EOS, Strength/Failure model: order of 10% (or more?)
4) Simulation accuracy of hydrocodes (mesh size, time step, ...): order of 5\%
$>$ Reference for machine protection: a margin of 20-30\% is suggested

V. Summary

$>$ For the simulation of hydrodynamic tunnelling, a different implementation coupling FLUKA and Autodyn has been benchmarked against HiRadMat-12 experiment and previous study coupling FLUKA and BIG2.
$>$ Other case studies are foreseen, see Christoph's talk this afternoon.

Thank you!

(2)

