Outlook on Future Hydrodynamic-Tunnelling Studies and Scope of Discussion

C. Wiesner, Y. Nie, R. Schmidt, A. Verweij, D. Wollmann

Workshop on coupling simulation of beam impact on accelerator components December, 11th 2018

Outline

- 1) Introduction
- 2) Failures cases and previous studies
- 3) Possible future hydrodynamic-tunnelling studies
- 4) Questions for discussion

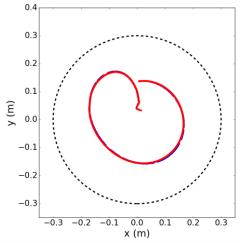
Introduction

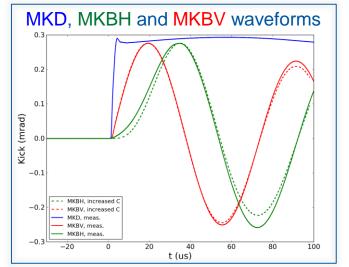
- Evaluation of machine protection functionality requires estimate of failure consequences
- For extreme failure cases this might require hydrodynamictunnelling studies
- Extreme failure cases are usually "beyond-design failures"

Beam damage experiment, SPS beam, 2004, V. Kain/R. Schmidt

LBDS failure cases

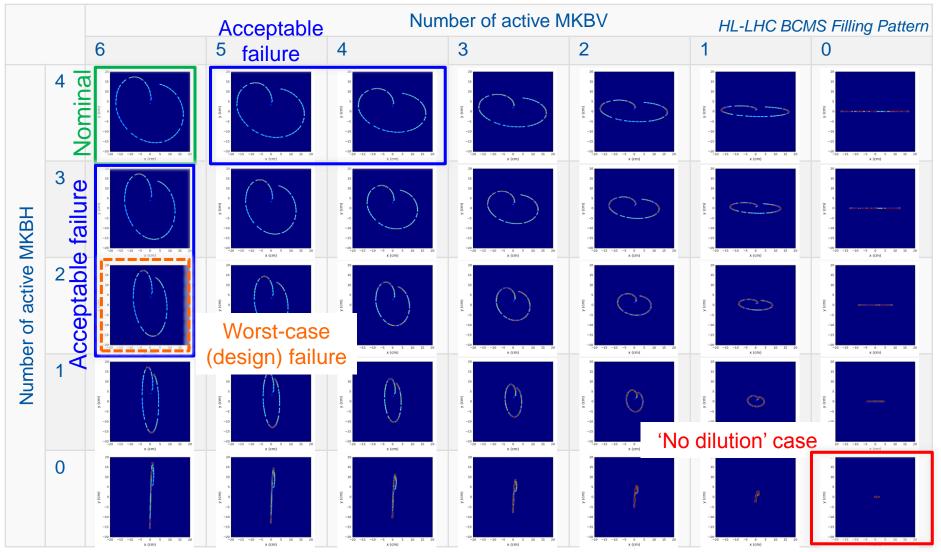
"Acceptable (Design) Fault Cases"	"Unacceptable (Beyond Design) Fault Cases"	[LHC Design Report,
Asynchronous beam dump	MKDs not firing upon request	
One missing extraction kicker (MKD)	Wrong energy information in BETS → beam can impact on machine/TCDQ	
Missing dilution kicker	Complete dilution failure with high- intensity beam	
		Chap. 17]
MKD Q4 TCDS M TCDS M To TCDS	ISD MKB TCDQ Q4	




LHC dilution system

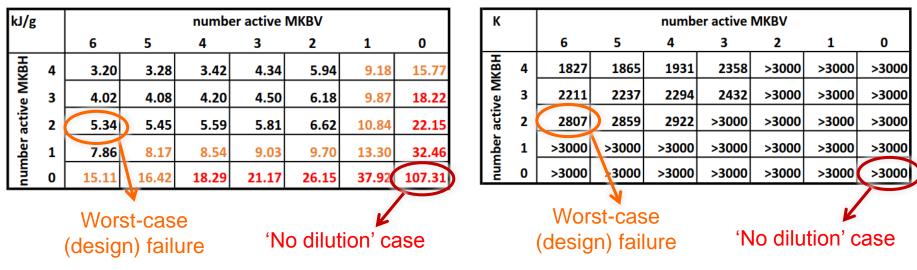
C. Bracco et al., LHC Performance Workshop, Chamonix, 26/01/2016

Nominal dilution pattern



Dilution failures

- Worst case (design) failure: high-voltage flashover of 2 MKBH
- Failure beyond design: complete loss of dilution



For the discussion of a new potential worst-case dilution failure see C. Wiesner et al., 170th MPP, 28.9.2018

Dilution failures: energy deposition

- Peak energy deposition in LHC dump core:
 STD
- Corresponding maximal temperature increase:

STD

	STD
$\epsilon_{x,y}^n$	2.08 μ m \cdot rad
I _b	2.3×10 ¹¹
Filling Scheme	R3-STD
Nominal beam intensity	6.32×10 ¹⁴ p+

FLUKA calculations from: *M. Frankl, Energy deposition table for dilution failures, LIBD, 20.6.2017*

Previous studies

- HiRadMat experiment: **440 GeV**, p+ on **copper** target
 - Hydrodynamic tunnelling simulated with FLUKA+BIG2 and with FLUKA+Autodyn
 - Good agreement between experiment and both hydrodynamic codes

[F. Burkart]

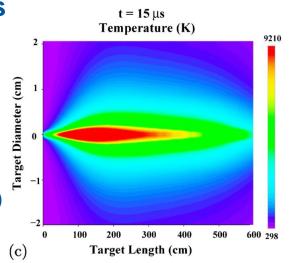
Accelerator	Proton energy	Bunch number	Bunch intensity	Bunch separation	rms beam size	Target material	Tunneling range	Source	
SPS SPS	440 GeV 440 GeV	108 108	$1.5 imes 10^{11}$ $1.5 imes 10^{11}$	50 ns 50 ns	0.2 mm 0.2 mm	Copper Copper	0.8 m 0.795 m	Simulation [23] Experiment [24,25]	
SPS	440 GeV	144	1.5×10^{11}	50 ns	0.2 mm	Copper	0.9 m	Simulation [23]	BIG2
SPS	440 GeV	144	1.5×10^{11}	50 ns	0.2 mm	Copper	0.85 m	Experiment [24,25]	Autodyr
SPS	450 GeV	288	1.1×10^{11}	25 ns	0.088 mm	Copper	1.3 m	Simulation [11]	
SPS	440 GeV	288	1.15×10^{11}	25 ns	0.2 mm	Copper	1.1 m	Simulation [22]	
SPS	440 GeV	288	1.15×10^{11}	25 ns	0.5 mm	Copper	0.85 m	Simulation [18,22]	
LHC	7 TeV	2808	1.15×10^{11}	25 ns	0.2 mm	Copper	35 m	Simulation [13,17]	
LHC	7 TeV	2808	1.15×10^{11}	25 ns	0.5 mm	Graphite	25 m	Simulation [18]	BIG2
FCC	40 TeV	10600	1.0×10^{11}	25 ns	0.2 mm	Copper	290 m	Simulation [27]	
FCC	50 TeV	10600	1.0×10^{11}	25 ns	0.2 mm	Copper	350 m	Simulation [27]	_

TABLE I. Summary of hydrodynamic tunneling studies for the SPS, the LHC, and the FCC.

Y. Nie et al., PRAB 20, 081001 (2017)

Possible future studies I

1st study: 7 TeV Benchmark with LHC parameters


- Simulation already performed using FLUKA+BIG2
- → Repeat using FLUKA+Autodyn

Simulation parameters:

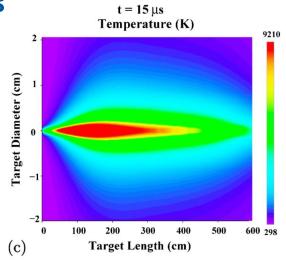
- **7 TeV**, 2808b, **1.15e11 ppb**, $\sigma_x = \sigma_y = 0.5$ mm (2d case)
- **Graphite** target (r = 5 cm, I = 6 m, density 2.28 g/cm³)

Goal:

- Establish 2nd simulation benchmark between BIG2 and Autodyn
- Compare physics results for 7 TeV
- Prepare further simulations

Temperature distribution calculated with BIG2 for a 7 TeV LHC beam on a carbon target [N. A. Tahir et al., PRSTAB 15, 051003 (2012)]

Possible future studies I


1st study: 7 TeV Benchmark with LHC parameters

Required steps:

- Set up FLUKA and Autodyn simulations: MPE-PE, EN-STI, EN-MME, and N. Tahir (GSI)
- Study 'automatized' code coupling: MPE-PE, EN-MME
- Physics interpretation of results, discussion and comparison with BIG2 results, together with N. Tahir (GSI)

Questions for discussion:

- Benefit of benchmark study at 7 TeV?
- Material properties/EoS for graphite?
- How to efficiently couple energy-deposition and hydrodynamic codes? Use of MpCCI?

Temperature distribution calculated with BIG2 for a 7 TeV LHC beam on a carbon target [N. A. Tahir et al., PRSTAB 15, 051003 (2012)]

Possible future studies II

2nd study: Full beam impact with HL-LHC intensities

Possible simulations parameters

- **7 TeV**, ~**2.3e11** ppb, $\sigma_x = \sigma_y = ~1.2$ mm (2d case)
- **Graphite** target (lower density: 1.1 g/cm³ 1 .8 g/cm³?)

Goal

 Estimate tunnelling range for impact of full HL-LHC beam on graphite

Possible future studies II

2nd study: Full beam impact with HL-LHC intensities

Required steps:

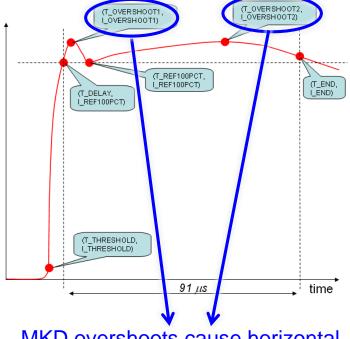
- Set up FLUKA and Autodyn simulations
- Continue study for 'automatized' code coupling
- Physics interpretation of results and discussion, together with N. Tahir (GSI)

Questions for discussion:

• Material properties/EoS for lower density graphite?

Possible future studies III

3rd study: 'No-dilution case' with MKD overshoots


Possible simulation parameters:

- **7 TeV**, ~**2.3e11** ppb, $\sigma_x = \sigma_y = ~1.2$ mm
- Different beam impact parameters for each bunch due to MKD deflection (3d case)
- Graphite target (densities as in TDE)

Goal

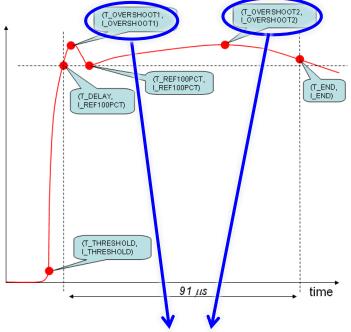
 Estimate tunnelling range for impact of 'undiluted' HL-LHC beam on graphite dump

MKD overshoots cause horizontal movement of ~2 cm at the dump

*J. Uythoven, Naming of characteristic points of MKD and MKB waveforms, derived quantities and logical tests – Version 2, EDMS No. 910572

Possible future studies III

3rd study: 'No-dilution case' with MKD overshoots


Required steps:

- Agree on simulation parameters: ABT, MPE, EN-STI, ...
- Set up FLUKA and Autodyn simulations
- Extend 'automatized' coupling to 3d mesh
- Physics interpretation of results and discussion of possible implications

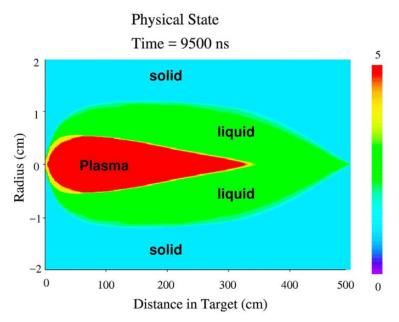
Questions for discussion:

Material properties/EoS for lower density graphite?

Extraction kicker (MKD) waveform*

MKD overshoots cause horizontal movement of ~2 cm at the dump

*J. Uythoven, Naming of characteristic points of MKD and MKB waveforms, derived quantities and logical tests – Version 2, EDMS No. 910572


Possible future studies: outlook

Sensitivity studies

 Variation of beam size, beam intensity, material properties?

Questions for discussion:

- Plasma effects relevant for hydrodynamic tunnelling?
- How to use FLUKA for beammatter interaction in the regime of plasma?

Physical state of Cu cylinder after impact of 380 LHC bunches, calculated with BIG2 (7 TeV, 1.15e11 ppb, $\sigma = 0.2$ mm) [N.A. Tahir et al., NIM B 427 (2018) 70–86]

Questions for discussion

- Do we need a benchmark study BIG2/Autodyn at 7 TeV?
 - 1st study: 7 TeV Benchmark with LHC parameters?
- Most relevant future studies?
 - 2nd study: Full beam impact with HL-LHC intensities?
 - 3rd study: 'No-dilution case' with MKD overshoots? ...
- How to efficiently couple energy-deposition and hydrodynamic codes? Can MpCCI be used?
- Material properties, equation of state, choice of constitutive models and their influence on results
 - Material properties of graphite? SESAME data base?
- Are there any plasma effects relevant for hydrodynamic tunnelling?
- How to use FLUKA for beam-matter interaction in the regime of plasma?

. . .

Thank you for your attention!

LHC Risk Matrix

HL-LHC/ LHC risk matrix		Recovery						
		∞	year	month	week	day	hours	minutes
		S7	S6	S5	S4	S3	S2	S1
Frequency	1 / hour							
	1 / day							
	1 / week							
	1 / month							
	1 / year							
	1 / 10 years							
	1 / 100 years							
	1 / 1000 years							

Risk matrix: J. Uythoven/M. Blumenschein

