

WLCG Common JWT Profiles
Authored by the WLCG AuthZ Working Group

Version History:

Date Version Comment

17.09.2019 0.1 Final version presented to
MB

Introduction 4

Glossary 5

WLCG Token Profile 7

WLCG Token Claims 7

Common Claims 7

ID Token Claims 10

Access Token Claims 11

Authorization 12

Capability based Authorization: scope 12

Group Based Authorization: wlcg.groups 14

Interpretation of Authorization by the Resource Server 15

Identity Assurance 15

Scope-based Attribute Selection 16

Scope-based Group Selection 16

Scope-Based Capability Selection 18

Requesting Token Versions 19

Security Considerations 20

Distribution of Trust 20

Example 21

1

Token Verification 21

Metadata lookup 22

Verification Example 22

Token Validation 23

Token Lifetime Guidance 23

Refresh tokens and token revocation 25

Claim and Token validation 25

Operational Impact of Verification and Refresh 26

Appendix 27

Discovery 27

What is Discovery (the metadata lookup process)? 27

Well-known URIs 27

The OpenID connect approach to well-known URIs 27

The OAuth approach to well-known URIs 28

OpenID Connect/OAuth authentication and authorization flows for WLCG 28

Confidential vs public clients 29

Authorization flows 29

Authorization code flow 30

Refresh token flow 30

Device flow 30

Client credentials flow 30

Token exchange flow 30

Examples 31

Device flow token request example 31

OAuth2 Auto-Discovery and Token Request 33

Example Identity Token 34

Example Access Token with Groups 35

Example Access Token with Authorization Scopes 36

2

3

Introduction
This document describes how WLCG users may use the available geographically distributed
resources without X.509 credentials. In this model, clients are issued with bearer tokens; these
tokens are subsequently used to interact with resources. The tokens may contain authorization
groups and/or capabilities, according to the preference of the VO, applications and relying
parties.

Wherever possible, this document builds on existing standards when describing profiles to
support current and anticipated WLCG usage. In particular, three major technologies are
identified as providing the basis for this system: OAuth2 (RFC 6749 & RFC 6750), ​OpenID
Connect​ and JSON Web Tokens (RFC 7519). Additionally, trust roots are established via
OpenID Discovery or OAuth2 Authorization Server Metadata (RFC 8414). This document
provides a profile for OAuth2 Access Tokens and OIDC ID Tokens. ​The WLCG Token Profile
version described by this document is “1.0”.

The profile for the usage of JSON Web Tokens (RFC 7519) supports distributed authentication
and authorization within the WLCG. The JWT profile is meant as a mechanism to transition
away from the existing GSI-based (Globus) system where authentication is based on X509
proxy certificates and authorization is based on VOMS extensions and identity mapping.

The trust model used in this profile is VO-centric and uses the concept of transitive trust: an
individual establishes an identity within the VO (through an identity proofing mechanism not
described here) and any authentication mechanism happens within the scope of the VO. This is
in strong contrast to the current X509-based system where a global identity is established
completely orthogonal to the VO.

The WLCG has identified two strong use cases for these profiles: issuing information about an
identity and issuing bearer-token-based authorizations. Identities are typically needed within a
VO’s services, which might provide different views or authorization based on the individual’s
identity within the VO.

We do not see the VO-based identity being authenticated from a bespoke username/password
for the WLCG, but rather through the various global identity federations in use by the
community. For CERN-centric VOs, this may be as simple as integrating with CERN SSO;
however, it is considered out-of-scope for this document.

Note that the authorization model is VO-centric: the VO is authorizing access to its distributed
pool of resources. The user authentication and the resource authorization are independent in
such a way that a user authenticating with e.g. a SAML (Security Assertion Markup Language)
assertion issued by their home organisation with a certain validity period may be provisioned by
the VO with an OAuth2 Access Token with a different validity period.

4

http://openid.net/developers/specs/
http://openid.net/developers/specs/

Although VOs could implement their own solutions according to an agreed specification, it is
hoped that a common implementation can be used (analogous to how VOMS-Admin is operated
at CERN).

One item not addressed in detail in this document is how the issuer decides on whether to issue
tokens - and how the token transits from the issuer to the client. It is envisioned that Access
and ID Tokens linked to a user identity be acquired through OIDC flows and that WLCG VOs will
decide on their issuing policy. An exception to this is the OAuth2 Client Credential
Authentication flow, since there is no user identity associated with the client. OAuth2 flows may
be used following OIDC authentication, for example for token exchange or introspection. A
description of these flows is provided in the Appendix.

Glossary

Term Definition WLCG Example
(if applicable)

OAuth 2.0 OAuth 2.0 is the industry-standard protocol for
authorization. OAuth 2.0 supersedes the work done on
the original OAuth protocol created in 2006. OAuth 2.0
is used for delegating authorization to a client (defined
below). In many implementations, the OAuth 2.0-issued
Access Tokens build upon JSON Web Tokens (RFC
7519).

OIDC (or
OpenID
Connect)

OpenID Connect (OIDC) is an authentication layer on
top of OAuth 2.0. It leverages a specific OAuth 2.0 flow
with the aim of providing authentication information and
relevant identity attributes. OIDC flows may issue
OAuth2 Access Tokens, Refresh Tokens as well as ID
Tokens.

Token JSON Web Token (JWT). A string representing a set of
claims (pieces of information about a subject) as a
JSON object that is encoded in a JWS or JWE, enabling
the claims to be digitally signed or MACed and/or
encrypted. ​JSON Web Token​ - RFC 7519

An OIDC or
OAuth Token
issued by the
VO

Access Token Access tokens are credentials used to access protected
resources. An access token is a string representing an
authorization issued to the client . 1

1 https://tools.ietf.org/html/rfc6749#section-1.4

5

http://tools.ietf.org/html/rfc7519

ID Token A JWT specified by OIDC that contains user
information, represented in the form of claims . 2

Issuer Any token issuer, this refers to both Authorization
Servers and OpenID Providers.

VO https url

Authorization
Server

The entity which produces (“issues”) the token. For
WLCG authorization, this is a service run by the VO that
is asserting the identity or the authorization to access
the VO’s resources. This term is defined by OAuth2 and
may be referred to as the Authorization Server.

Future WLCG
VO Identity and
Attribute
Management
Service

OpenID
Connect
Provider​ ​(OP)

A specific implementation of the OAuth Authorization
server, which provides user authentication and
represents an entity that offers user authentication as a
service. It provides additional functionality, such as a
/userinfo endpoint. This term is defined by OpenID
Connect.

Client An application making protected resource requests on
behalf of the user and with its authorization. The term
“client” does not imply any particular implementation
characteristics (e.g., whether the application executes
on a server, a desktop, or other devices).

E.g. HTCondor
submit host or
an experiment
framework

Relying Party
(RP)

Can be applied to both OAuth client and resource
provider roles; it is an application that outsources its
user authentication function to an external Identity
Provider. This term has been adopted by OpenID
Connect. It is often used synonymously with “Client”.

E.g. PanDA
framework

Bearer A user’s agent that holds the token and is able to send it
securely to a third party.

E.g. a job

Resource
Provider

An entity that receives a Token, validates it, and decides
whether to provide the bearer access to a

E.g. a Storage
Element

2 Note: in the OpenID Connect core specification, the ID token is intended primarily to contain information
about the authentication, while profile information such as the user’s name and email is typically retrieved
via the UserInfo endpoint. Since this puts a strain on the OP, we prefer to make - as much as possible -
use of self-contained tokens, and return all the claims in the ID token

6

corresponding resource. This term is defined by OAuth2
and may be referred to as the Resource Server.

Resource
owner

An entity capable of granting access to a protected
resource. When the resource owner is a person, it is
referred to as an end-user. This term is defined by
OAuth2.

User/VO

WLCG Token Profile
A common set of claims is proposed for WLCG tokens, with additional claims specified for both
Identity and Access tokens. Operational experience in the wider community indicates that
performance and compatibility issues with existing libraries may be experienced if large tokens
are used; this claims set has been developed with claim length minimisation as a priority.

WLCG Token Claims
This profile inherits from JSON Web Tokens at its base, including a specific claims language
from RFC 7519. In this section, we outline the common WLCG-specific usage of the claims, for
Access and ID Tokens, denoting any changes in claim criticality.

Common Claims
The following claims may be included in both Access and Identity tokens.

Claim Origin Usage Note Required ? 3

sub RFC7519
& OpenID
Connect
core

Typically indicates the individual or entity this token
was originally issued to. The subject (​sub​) must be
locally unique for a specific issuer, i.e. within the
WLCG VO. It must be ASCII-encoded, not exceeding
255 characters in length, and is a case-sensitive
string.

Suggested use cases for the ​sub​ claim are
suspending access to resources, auditing, user-level
accounting, monitoring, or tracing. Due to privacy
concerns, VOs SHOULD issue non-human-readable
subjects. The ​sub​ MUST be unique and

Required

3 Is the token issuer required to send this claim?

7

non-reassigned within the VO. A VO MUST NOT use
the same subject for multiple entities.

exp RFC7519
& OpenID
Connect
core

The interpretation for ​exp​ is unchanged from the RFC,
it represents the expiration time on or after which the
Token MUST NOT be accepted for processing.

Required

iss RFC7519
& OpenID
Connect
core

The issuer (​iss​) of the WLCG JWT. It MUST contain
a unique URL for the organization ; it is to be used in 4

verification as described in the “Token Verification”
section. For WLCG this would be the VO.

Required

wlcg.v
er

WLCG
AuthZ
WG

We add the ​wlcg.ver​ claim to denote the version of
the WLCG token profile the relying party must
understand to validate the token (claim validation is
covered in the next section). ​wlcg.ver​ names
MUST comply with the following grammar:

vername ::= [0-9]+\.[0-9]+

The ​wlcg.ver​ claim corresponds to a version of this
document. The initial version of this document
constitutes version “1.0”. Although versions are
expected to be treated as strings, we adopt a numeric
format for simplicity.

Required

eduper
son_a
ssuran
ce

REFEDS See below Optional

acr OpenID
Connect
core

The ​acr​ claim conveys the assurance of the
authentication, e.g. Multi or Single Factor. It is typically
included in addition to the eduperson_assurance
claim.

Optional

4 This implies running a token issuer in a high availability mode behind a single URL.

8

wlcg.gr
oups

WLCG
AuthZ
WG

The ​ ​wlcg.groups​ ​claim conveys group membership
about an authenticated end-user. The claim value is
an ordered JSON array of strings that contains the
names of groups of which the user is a member in the
context of the VO that issued the Token. Group names
are formatted following the rules in the next section.
Group names MUST comply with the following
grammar where group is defined recursively: 5

group ::= '/' groupname | group '/'

groupname

groupname :: =

[a-zA-Z0-9][a-zA-Z0-9_.-]*

Usage of this claim is OPTIONAL. However, the
wlcg.groups​ claim is REQUIRED in all tokens
issued as a result of an OpenID Connect
authentication flow in which wlcg.groups are
requested via scopes and the subject is entitled to the
groups in question. The group request mechanism is
described in more detail in section “Scope-based
Attribute Selection” of this document.

Note: it is expected that a more verbose syntax and
different claim (eduperson_entitlement), as
recommended by AARC Guidelines, could also be 6

required in the event that authorization information is
exchanged with external Infrastructures.

Optional,
but when
requested it
MUST be
present in
both token
types.

aud RFC7519
& OpenID
Connect
core

The ​aud​ claim represents the audience or audiences
the token is intended for. In the general case, the ​aud
value is an array of case sensitive strings. In the
common special case when there is one audience, the
aud value MAY be a single case sensitive string. The
special string value of “https://wlcg.cern.ch/jwt/v1/any”
signifies that the issuer intends the token to be valid
for all relying parties; this string value is required in

Required

5 From GFD-I.182, the VOMS spec for FQANs (§3.4.1.4)
6 https://aarc-project.eu/guidelines

9

order to force an issuer to explicitly state the intent
that the token is targeted to any relying party.

The contents of the claim may either be a string or
URL; we do not currently provide specific guidance on
selecting audience names.

iat RFC7519 The claim represents the time at which the token was
issued. Its value is a JSON number representing the
number of seconds from 1970-01-01T0:0:0Z UTC until
the token issue time in UTC.

Required

nbf RFC7519 The interpretation for ​nbf​ (not before) is unchanged
from the RFC. For example, usage of nbf allows the
issuer to make the token valid prior to the issue
instant, potentially easing clock skew issues in a
distributed environment.

Optional

jti RFC7519 The interpretation for ​jti​ (JWT ID) is unchanged from
the RFC. It is a unique identifier that protects against
replay attacks and improves traceability of tokens
through the distributed system. It MUST be unique
within an issuer and SHOULD be unique across
issuers.

Required

ID Token Claims
For the ID Token schema we rely on the OpenID Connect (OIDC) standard, and in particular on
the ​core specification​. OpenID Connect is “a simple identity layer on top of the OAuth 2.0
protocol. It allows Clients to verify the identity of the End-User based on the authentication
performed by an Authorization Server, as well as to obtain basic profile information about the
End-User in an interoperable and REST-like manner.” (for more information on OpenID
Connect, refer to ​http://openid.net/connect/​). We expect the validation of these tokens to
additionally follow the corresponding flows in the OIDC standard (see ​ID token validation​ and
code flow token validation​).

OpenID Connect implements authentication as an extension to the OAuth 2.0 authorization
process. Use of this extension is requested by Clients by including the ​openid ​ scope value in
the Authorization Request. Information about the authentication performed is returned in a
JSON Web Token (JWT) often called an ID Token. The discussion on the OpenID Connect

10

http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/connect/
http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowTokenValidation

flows used to obtain the ID token is out of the scope of this document but referred to in the
Appendix.

In the following section we describe the schema for identity related claims included in the ID
token. Some of these claims MAY be also included in an access token, when the token is
obtained through an OpenID Connect flow, or returned as the result of a call to the ​userinfo
endpoint exposed by the OpenID Connect Provider issuing the token, or as the result of an
access token introspection​ at the same provider.

The following additional claims are defined for WLCG ID Tokens. Other identity-related ​claims
could be included in the ID Token​, ​or returned in the result of calls to the userinfo or token
introspection endpoint,​ ​following the recommendations of the ​OpenID Connect core profile​.

Claim Origin Usage Note Required?

auth_ti
me

OpenID The ​auth_time​ claim represents the time when the
End-User authentication occurred. The claim value is
a JSON number representing the number of seconds
from 1970-01-01T0:0:0Z as measured in UTC until the
End-User authentication time. As in the ​OpenID
Connect core profile​, the claim is REQUIRED when
requested explicitly in the authentication request,
otherwise is OPTIONAL.

Optional,
but when
requested it
MUST be
present

Gener
al
OIDC
Claims

OpenID General OIDC ​claims​ may be included in tokens. For
example, the ​nonce​, ​preferred_username​, and
email​ claims that are derived from the OIDC core
specification and follow the rules prescribed there.

Optional

Access Token Claims
The Access Token includes information about the authorization and rights the bearer is allowed
to make use of. The Access Token is meant to be utilized on distributed services such as for
storage or computing, whereas the ID Tokens is not intended to be sent to resource servers.

The Access Token profile contains two different approaches to authorization - group
membership-based and capability-based, see the paragraph “Interpretation of Authorization by
the Resource Server”.

When group membership is asserted, it is a statement that the bearer has the access privileges
corresponding to the VO’s listed groups: it is up to the resource to determine the mapping of the

11

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://tools.ietf.org/html/rfc7662
http://openid.net/specs/openid-connect-core-1_0.html#Claims
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#Claims

group names to the access privileges. The technical profile of the group membership is
described in the Common Claims section and not repeated here.

When a capability is asserted, it is relative to the VO’s coarse-grained authorization; the
resource only maps the token to a VO, then relies on the specified capability in the token for the
fine-grained authorization within the VO’s authorized area. In this way, the VO, not the
resource, manages the authorizations within its area.

An access token SHOULD include at least the ​scope​ or ​wlcg​. ​groups​ claim.

The following additional claims are defined for Access Tokens.

Claim Origin Usage Note Required?

scope Inspired
by OAuth
token
exchange
draft

See below Optional

Claims defined by the WLCG Authorization Working Group should ideally be registered
appropriately in the public domain . 7

Authorization
The token profile contains two different approaches to authorization - user attribute-based (e.g.
groups or assurance) and capability-based.

Capability based Authorization: scope
Authorization may be based on the scope claim. The value of the scope claim is a list of 8

space-delimited, case-sensitive strings (as in ​OAuth Token Exchange draft 19, section 4.2​)
reflecting authorized activities the bearer of this token may perform.

We aim to define a common set of authorizations (particularly storage-related authorizations),
but envision additional authorizations will be added to meet new use cases. The interpretation of
such authorizations would result in a list of operations the bearer is allowed to perform.

For a given storage resource, the defined authorizations include:

7 Such registrations could be made through IETF or appropriate bodies, and made publicly available e.g.
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xml
8 Note that the motivation of using the name “​scope​” here is inspired from the claim language proposed
for standardization as part of the OAuth token exchange draft RFC, and due to its existing use in
SciTokens.

12

https://tools.ietf.org/html/draft-ietf-oauth-token-exchange-19#section-4.2

● storage.read​: Read data. Only applies to “online” resources such as disk (as opposed
to “nearline” such as tape where the ​stage​ authorization should be used in addition).

● storage.create​: Upload data. This includes renaming files if the destination file does not
already exist. This capability includes the creation of directories and subdirectories at the
specified path, and the creation of any non-existent directories required to create the
path itself (note the server implementation MUST NOT automatically create directories
for a client). This authorization DOES NOT permit overwriting or deletion of stored data.
The driving use case for a separate ​storage.create ​ scope is to enable stage-out of
data from jobs on a worker node.

● storage.modify​: Change data. This includes renaming files, creating new files, and
writing data. This permission includes overwriting or replacing stored data in addition to
deleting or truncating data. This is a strict superset of ​storage.create ​.

● storage.stage​: Read the data, potentially causing data to be staged from a nearline
resource to an online resource. This is a superset of ​storage.read ​.

For a given computing resource, the defined authorization activities include:

● compute.read:​ “Read” or query information about job status and attributes.
● compute.modify:​ Modify or change the attributes of an existing job.
● compute.create: ​Create or submit a new job at the computing resource.
● compute.cancel:​ Delete a job from the computing resource, potentially terminating a

running job.

We use explicit "storage" and "compute" prefixes in the scope names in order to prevent token
confusion at the issuer; if the unadorned string “upload” were used for both storage and
compute cases, a token meant for uploading job results could potentially be usable for
submitting jobs to a computing resource.

The operation definitions are currently kept open-ended and intended to be interpreted and
evolved by the WLCG community.

Scopes MAY additionally provide a resource path, which further limits the authorization. These
paths are provided in the form ​$AUTHZ:$PATH ​. For example, the scope ​storage ​.​read:/foo
would provide a read authorization for the resource at ​/foo ​ but not ​/bar ​. Resources allow a
hierarchical relationship to be expressed; an authorization for ​storage.modify:/baz ​ implies
a write authorization for the resources at ​/baz/qux ​ (this is similar for ​storage ​.​read ​)
authorizations. Resources accepting scopes MUST handle these resource-based authorizations
as described in this document; implementers should be aware this differs from the standard
handling of OAuth2 scopes.

This authorization scheme is not equivalent to POSIX semantics. When mapping this
authorization scheme to a POSIX-like filesystem, some considerations must be made for user
and group ownership. For example, if a token is issued with authorization

13

storage ​.​read:/home ​, an implementation MUST override normal POSIX access control and
give the bearer access to all users’ home directories.

For all ​storage.* ​ scopes, ​$PATH ​ MUST be specified (but may be ​/ ​ to authorize the entire
resource associated with the issuer); if not specified for these scopes, the token MUST be
rejected. A token issuer MUST utilize absolute paths and normalize them according to section 6
of RFC 3986; as in RFC 3986, each component of the path must be URL-escaped. If a relying
party encounters a non-conforming token, then it is implementation-defined if it rejects the token
or performs path normalization.

The scope claim MAY include multiple authorizations of the same scope name, e.g.
storage.create:/foo storage.create:/bar ​.

In the case of batch or computing resources, it is not clear how to define finer-grained
resources. Currently, the authorizations of the relevant scopes (​compute.read,
compute.modify, compute.create, compute.cancel ​) refer to all jobs owned by the
issuer. For example, a token with ​compute.read ​ scope issued by ​https://cmsweb.cern.ch
would be able to query the status of any CMS job at the resource.

When rendered in JSON, the value of the ​scope ​ claim should be a space-separated list if there
is more than one authorization present.

Examples values of the ​scope ​ claim:

● “storage.read:/” ​This would allow a job (or any bearer) to read any file owned by
the VO.

● “storage.read:/protected storage.create:/protected/subdir” ​ This
would allow a job to read the VO’s data in the ​/protected ​ subdirectory but
(destructively) write into ​/protected/subdir ​.

● “compute.create” ​ This would allow the bearer to submit jobs to a batch system on
behalf of the issuing VO.

● “storage.stage:/tape/subdir storage.read:/protected/data” ​ This
would allow the bearer to read (and possibly stage) files in ​/tape/subdir ​ and read
files in ​/protected/data ​.

● “storage.read:/store storage.create:/store/mc/datasetA” ​ This would
allow the bearer to read from ​/store ​ and create new files (not overwriting existing data)
in ​/store/mc/datasetA ​.

Group Based Authorization: wlcg.groups

14

https://cmsweb.cern.ch/

Authorization may be based on the ​wlcg.groups ​ claim. The value of the ​wlcg.groups ​ claim
is an ordered JSON array of case-sensitive strings reflecting the VO groups of which the token
subject is a member.

wlcg.groups ​semantics are equivalent to existing VOMS groups. VOMS roles should be
considered as optional (i.e. returned only if requested) ​wlcg.groups ​; selection of optional
groups is discussed below.

Interpretation of Authorization by the Resource Server
When groups are asserted (in an Access Token or ID Token, or both), it is a statement that the
bearer has the access privileges corresponding to the VO’s listed groups: it is up to the resource
to determine the mapping of the group names to the access privileges.

When a capability is asserted (only in Access Tokens), it is relative to the VO’s coarse-grained
authorization; the resource only maps the token to a VO, then uses the capabilities in the token
for fine-grained authorization within the VO’s authorized area. In this way, the VO, not the
resource, manages the authorizations within its area.

Access tokens may convey authorization information as both groups and capabilities. If both
group membership and capabilities are asserted, then the resource server should grant the
union of all authorizations for the groups and capabilities that it understands. The resource
server may choose to not provide authorizations based on capabilities or may choose to not
map the asserted groups to any authorization. Both assertions of group membership and
capabilities are currently interpreted as positive authorizations.

Identity Assurance

The REFEDS Assurance Framework (​RAF v1.0​) splits assurance into three orthogonal
components, namely, identifier uniqueness, identity assurance, and attribute assurance. For
simplicity, RAF collapses the components into two assurance profiles Cappuccino and
Espresso. ​AARC-G021​ extends RAF with additional assurance profiles recommended to be
used between infrastructures: IGTF-BIRCH, IGTF-DOGWOOD and a new specific profile
addressing assurance derived from social-identity sources, AARC-Assam.

Since the assurance of authentication is not covered by RAF, the above profiles need to be
used in conjunction with specifications focusing on authentication, such as the ​REFEDS SFA
and ​REFEDS MFA​ profile. We adopt the ​eduperson_assurance ​ multi-valued claim proposed
by RAF to convey the assurance component values and profile. The ​acr ​ claim is included in 9

9 RAF still refers to it as eduPersonAssurance, but it will probably change into ​eduperson_assurance​,
following the OIDCre whitepaper.

15

https://wiki.refeds.org/display/ASS/REFEDS+Assurance+Framework+ver+1.0
https://wiki.geant.org/download/attachments/92573909/AARC-G021-Exchange-of-specific-assurance-information-between-Infrastructures.pdf
https://refeds.org/profile/sfa
https://refeds.org/profile/mfa

addition to the ​eduperson_assurance ​ claim to specifically convey the authentication
assurance.

In the case of this profile, identity assurance information will be sent by the WLCG token issuer
whenever a user authentication flow is used to obtain the token.

Scope-based Attribute Selection
As defined in Section 3.3 of the OAuth 2.0 specification [RFC6749], “scopes” can be used to
request that specific sets of information be made available as Claim Values. For WLCG, scopes
are envisaged for requesting the inclusion of authorization information, returned as instances of
the ​wlcg.groups ​ claim and/or the ​scope ​ claim (to convey capabilities). Scopes are also
defined to request specific versions of the WLCG token schema.

Scope-based Group Selection
VOMS provides two main attribute types:

● Groups​, which are used to assess group membership in the context of a VO.
● Roles​, which are used to assess special privileges in the context of a VO or a specific

group in the VO.

VOMS attributes are encoded to strings using a path-based syntax called ​Fully Qualified
Attribute Name​ (FQAN), e.g.:

● /atlas/calib-muon, /cms/itcms (group FQANs)
● /atlas/Role=production, /cms/Role=pilot (role FQANs)

In VOMS, group membership is ​always​ asserted in an attribute certificate (AC) (i.e., the users
get all the groups they belong to), while role inclusion is ​optional​, and must be explicitly
requested by the user.

VOMS also allows to impose an ordering on the requested attributes, since services mainly
consider the first FQAN included in a VOMS AC (usually called the primary FQAN) for
authorization.

We propose to use ​scopes​ to implement an attribute selection mechanism equivalent to the
one provided by VOMS, following the approach outlined in the OpenID Connect standard:

● https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

where scopes are defined and mapped to claims that are returned in access tokens, ID tokens
and results for ​userinfo endpoint​ and ​token introspection ​requests.

In the proposed model, there are two types of groups:

16

https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://tools.ietf.org/html/rfc7662

● Default groups​, whose membership is asserted regardless of explicit group
membership requests

● Optional groups​, whose membership is asserted only when explicitly requested by the
client application

Default groups are similar to VOMS groups, while optional groups resemble VOMS roles.

A parametric wlcg.​groups​ scope is introduced for group selection that has the following form:

wlcg.groups[:<group_name>]?

with the following rules:

● If the scope is parametric, i.e. it has the form ​wlcg.groups:<group_name> ​, the
authorization server will return the requested group as a value in the ​wlcg.groups
claim if the user is a member of the given group.

● To request multiple groups, multiple parametric ​wlcg.groups:<group_name>
scopes are included in the authorization request.

● If the scope does not have the parametric part, i.e. its value is ​wlcg.groups ​, the
authorization server will return the list of default groups (order is defined by the VO
Administrator) for the user being authenticated for the target client. The default list of
groups, including its order, is configurable by VO administrators, possibly even on a
per-client basis.

● The order of the groups in the returned ​wlcg.groups ​ claim complies with the order in
which the ​wlcg.groups ​ scopes were requested.

● If not explicitly included, the non-parametric ​wlcg.groups ​ scope is implicitly added at
the end of the requested scopes list whenever any group scopes are included. If no
wlcg.groups ​ scopes are included then it will not be added, to allow for cases where a
client is only interested in capabilities.

● The returned ​wlcg.groups ​ claim will not contain duplicates

If an entity is not entitled to a group, the scope requested may be ignored by the server and the
corresponding token may not have the corresponding claims; in this case, section 3.3 of RFC
6749 requires the token issuer to inform the client. A server may also return an error during the
authorization request. Client software implementations should always verify the scopes
present in the returned token.

Examples:

In the following examples, “/cms” is the only default group.

17

Scope Request Claim Result

scope=wlcg.groups "wlcg.groups": ["/cms"]

scope=wlcg.groups:/cms/uscms wlcg.groups:/cms/ALARM

"wlcg.groups":
["/cms/uscms","/cms/ALARM", "/cms"]

scope=wlcg.groups:/cms/uscms wlcg.groups:/cms/ALARM
wlcg.groups

"wlcg.groups":
["/cms/uscms","/cms/ALARM", "/cms"]

scope=wlcg.groups wlcg.groups:/cms/uscms
wlcg.groups:/cms/ALARM

"wlcg.groups": ["/cms",
"/cms/uscms","/cms/ALARM"]

scope=wlcg.groups:/cms wlcg.groups:/cms/uscms
wlcg.groups:/cms/ALARM

"wlcg.groups": ["/cms",
"/cms/uscms","/cms/ALARM"]

Scope-Based Capability Selection
Each desired capability should be requested in the scope request, following the
recommendatIons of section 3.3 of RFC 6749.

If an entity is not entitled to a capability, the scope requested may be ignored by the server and
the corresponding token may not have the corresponding claims; in this case, section 3.3 of
RFC 6749 requires the token issuer to inform the client. A server may also return an error
during the authorization request. Client software implementations should always verify the
scopes present in the returned token.

Examples:

Scope Request Claim Result

scope=storage.read:/home/joe "scope": "storage.read:/home/joe"

scope=storage.read:/home/joe storage.read:/home/bob "scope": "storage.read:/home/joe
storage.read:/home/bob"

scope=storage.create:/ storage.read:/home/bob "scope": "storage.create:/
storage.read:/home/bob"

Requesting Token Versions
To support future evolution of the WLCG token format, a client may add the requested token
format as part of the scope request. A client wanting to receive a WLCG token should add the

18

wlcg ​ scope to its requests. If the client wants a specific version of a WLCG token, it should
additionally append a ​: ​ character and the version number (e.g., ​wlcg:1.0 ​ for a version 1.0
token).

For example, a client requesting a WLCG token with the compute.read scope would have the
following scopes requested:

scope=wlcg compute.read

A client requesting a WLCG token formatted with version 1.0 and the /atlas/production group
would have the following scopes requested:

scope=wlcg:1.0 wlcg.groups:/atlas/production

A server may decide to honor the client’s token format and version request, ignore the request
and issue a token with a different format or version, or return an error. A client SHOULD NOT
assume the returned token has the requested version.

If no specific version is requested, the server may utilize a default version for issued token or it
may associate a default version with the OAuth client’s registration.

19

Security Considerations

Distribution of Trust
Within OAuth2 and OpenID Connect, clients need to fully trust the Authorization Servers (AS) or
OpenID Connect providers (OP); in our model, these are under control of the VOs. At the same
time, the issuers need to trust the clients to the point that they are willing to hand them a token
on behalf of the end-users. Within the X.509 federation as used thus far, this distribution of trust
was covered by the IGTF (Interoperable Global Trust Federation) and the e-Infrastructures
distributing the set of trusted CAs; in the SAML world, this exchange of trust is handled by the
different national federations and by eduGAIN on a global scale in the form of signed metadata
exchange. On the other hand, OAuth2 and OIDC so far had very little use for a global trust
federation, being used primarily by large social networks, whose business model presumes a
single source of identity information (their own), and who typically allow any authenticated user
to register new clients without further authorization, leveraging user consent to handle the trust
and relying on the familiarity of the users with the limited number of OPs and ASes (everyone
knows Google and Facebook). In the R&E context such a model is not workable: eduGAIN
currently has close to 3000 IdPs and close to 2000 SPs requiring additional means of trust. One
way is to require explicit approval of clients by the OP and AS operators, similar to what is done
within (full mesh) SAML federations, but it was realized that such explicit approval will also not
scale if the number of clients and OPs will start to grow. For OIDC, there is currently an effort to
create an OIDC federation which describes a way to distribute and delegate trust by forming 10

‘federations’ and ‘sub-federations’. By leveraging the OIDC discovery and OIDC dynamic 11

registration specifications this then provides a way of automatically obtaining client id and 12

secret from OPs in the same OIDC federation.

For the WLCG, we foresee a limited number of registered OAuth2 clients - a small number per
supported VO. This registration may be done via federation or out-of-band mechanisms;
registration is not prescribed here. There will be a large number of unregistered resource
servers that will need to verify the issued token; this verification is described in the next section.
Additional features - web based federated login, token inspection or token exchange - will
require registration, pragmatically limiting these features to the VOs.

10 ​https://openid.net/specs/openid-connect-federation-1_0.html
11 ​https://openid.net/specs/openid-connect-discovery-1_0.html
12 ​https://openid.net/specs/openid-connect-registration-1_0.html

20

https://openid.net/specs/openid-connect-federation-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html

Example
A typical storage service must be able to map a token issuer (which corresponds to a single VO)
to an area within the storage that the issuer is allowed to issue authorizations for. As an
example, the XRootD implementation for JWT-based authorization has the following format:

[Issuer cms]

issuer = https://wlcg.example/cms

base_path = /users/cms

[Issuer dteam]

issuer = https://wlcg.example/dteam

base_path = /users/dteam

Here, the service administrator explicitly lists the issuers they trust (such as
https://wlcg.example/dteam​) and restricts each to a specific directory. The technical mechanism
for verifying a token based on the trusted issuer name is given in the next section.

Token Verification
A token MUST be a properly-formatted JSON Web Token (JWT), as described by RFC 7519. In
this subsection, we describe a mechanism to verify the token’s authenticity in line with the
standard.

The token MUST be signed with an asymmetric key (RSA- or EC-based signatures); the public
key used to sign the token MUST be determined with the following algorithm.

● Extract the ​iss ​ claim from the unverified token, check that the issuer is among the
trusted ones and determine the JWKS URI using the approach described in the
Metadata Lookup section in the Appendix.

● The contents of the JWKS URI MUST be compliant with RFC 7517. It provides a list of
public keys associated with the issuer. The token MUST contain a key ID (​kid ​) claim;
the public key used to sign the token MUST be identified by matching the token’s ​kid
claim with the corresponding key ID in the JWKS key set.

● Once the public key is determined, the verification of the token and its signature can
proceed as outlined in RFC 7519.

All communication between the resource and the issuer MUST be done over a valid HTTPS
connection with hostname verification. The token issuer SHOULD advertise the public key
lifetime by setting the appropriate HTTP caching headers. The Client SHOULD use HTTP
headers to avoid unnecessary downloads. The recommended lifetime of the public key cache is
one day, but SHOULD be kept to less than 7 days. Client implementations SHOULD cache the

21

https://wlcg.example/dteam

public key for an authorization server for at least 1 hour, regardless of the server-provided
value. Reducing the lifetime of a key will likely impact network traffic.

Metadata lookup
All token issuers for the WLCG MUST follow the rules defined in the ​OpenID Connect discovery
standard​, i.e. provide the server metadata at the ​.well-known/openid-configuration
sub-resource . 13

That is, if the issuer is ​https://dteam.wlcg.example​, then the server metadata must be available
at https://dteam.wlcg.example/.well-known/openid-configuration . See the OAuth 2.0
Authorization Server Metadata document (RFC8414) for a discussion on handling issuers with
sub-paths, such as ​https://wlcg.example/dteam​; it notes that
https://wlcg.example/.well-known/openid-configuration/dteam​ is preferred but
https://wlcg.example/dteam/.well-known/openid-configuration​ is acceptable as a fallback for
existing clients. Further, the JWKS URI key MUST be provided within this configuration file.

The token issuer endpoint is a crucial point of trust between the service and the VO; hence, the
TLS connection MUST be validated and verified according to best practices. The trust roots will
be needed by a wide variety of agents, including browser-based and terminal-based clients . 14

Signature algorithms are enumerated in ​RFC 7518 section 3​. The HMAC algorithms are
incompatible with the WLCG JWT approach; implementations should use the recommended
algorithms from the RFC (as of July 2018, this is ES256 or RS256; ES256 should be used when
token-length is a concern). Changes to the allowable signature algorithms will be handled using
the versioning mechanism described in the Token Validation section.

Verification Example
The RP needs to get hold of the ​https://dteam.wlcg.example​ issuer’s keys for remote verification
(which is necessary for scalability). For verification, a ​minimal​ OIDC discovery configuration file
would be:

{

 "issuer":" ​https://dteam.wlcg.example ​",
 "jwks_uri":" ​https://dteam.wlcg.example/oauth2/certs ​",
}

13 Note that the OpenID Connect Discovery paper highlights a mechanism that is NOT RFC 5785
compliant and is not aligned with the OAuth discovery standard. After some discussion this group decided
to embrace the OpenID Connect Discovery approach. More details in the appendix.
14 Each OS platform has its own set of acceptable CAs; suitable certificates should be used to facilitate
client development and maintain the existing level of trust. Discussions will be held between the WLCG
Authorization Working Group, IGTF and relevant partners.

22

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://dteam.wlcg.example/
https://wlcg.example/dteam
https://wlcg.example/.well-known/openid-configuration/dteam
https://wlcg.example/dteam/.well-known/openid-configuration
https://tools.ietf.org/html/rfc7518#section-3
https://dteam.wlcg.example/
https://scitokens.org/dteam
https://scitokens.org/dteam/oauth2/certs

For a usable OAuth2-based system, the ​token_endpoint ​ would also need to be provided
and a mechanism for how OAuth2 clients could register with the issuer; those are out of scope
for this document.

The contents of the JWKS URI contains the VO’s signing keys; an example:

{

 "keys": [

 {

 "alg": "RS256",

 "e": "AQAB",

 "kid": "key1",

 "kty": "RSA",

 "n":

"oj5UxvZGgQU2UHGdO2ViR6zkilHjTSFdTA_Jtb1KPKmqr3I7W-5YqI3xrIJoYNeazXGA

8l0w89BWfbet3NY8rlEocupmLpmeSRTh29DAIIskVKBevr2QbF-9qwunaLoMpal2ZFJTk

bMweiFiq-duhzcKI1JuaNkUJJpd6BGXVoszn31KHlVkUxd739FYyKLArUnnLRzQ6Ld6VD

iJrhRLnkUdXgitJuCy0gPaky9dWIVcKnjCI6F7F2o77II1m5lk3J9g6Dn6rfT6QppBQPz

_7t1LN-PIs-lO50nEsiDPHhb7GI0XucajA9ZAGXIPR11okFZqRuUaVnxizNXb1rHPmQ==

",

 "use": "sig"

 }

]

}

So, given a token header and payload (shown here not base64 encoded for human readability
purposes):

{"alg":"RS256","typ":"JWT","kid":"key1"}

{"jti":"40ce5a87-e419-4bdf-9e11-61dfb160f89d","sub":"e1eb758b-b73c-47

61-bfff-adc793da409c","exp":1522064875,"iss":"https://dteam.wlcg.exam

ple","iat":1522057675,"scope":["read:/store","write:/store/user/arese

archer"],"nbf":1522057675,”wlcg.ver”:”1.0”}

One would utilize the ​iss ​ claim in the payload to download the set of public keys from JWKS
URI, then utilize the ​kid ​ claim in the header to discover the public key used to sign the JWT.

Token Validation

Token Lifetime Guidance

Token Type Recommended
Lifetime

Minimum
Lifetime

Maximum
Lifetime

Justification

23

Access Token &
ID Token 15

20 minutes 5 minutes 6 hours Access token lifetime
should be short as we do
not foresee the
deployment of a
revocation mechanism.
The granted lifetime has
implications for the
maximum allowable
downtime of the Access
Token server.

Refresh Token 10 days 1 day 30 days Refresh token lifetimes
should be kept bounded,
but can be longer-lived as
they are revocable. Meant
to be long-lived enough to
be on a “human
timescale.” Refresh
tokens are not necessarily
signed and not tied to
issuer public key lifetime.

Issuer Public
Key Cache

6 hours 1 hour 1 day The public key cache
lifetime defines the
minimum revocation time
of the public key. The
actual lifetime is the
maximum allowable
downtime of the public key
server.

Issuer Public
Key

6 months 2 days 12 months JWT has built-in
mechanisms for key
rotation; these do not need
to live as long as CAs.
This may evolve following
operational experience,
provision should be made
for flexible lifetimes.

Note the combination of ​nbf​ (not before) (or ​iat​) and ​exp​ (expiration) provides a notion of token
valid lifetime. WLCG token issuers MUST issue Access tokens with valid lifetime of less than 6
hours; they SHOULD aim for a token lifetime of 20 minutes. Resource providers MUST NOT

15 It is not required that the two token lifetimes be identical. Typically Access Tokens are longer lived than
ID Tokens.

24

accept tokens that have validity longer than 6 hours. As a pragmatic guard against minor clock
skews, they SHOULD accept expired tokens that are less than 60 seconds expired. See the
recommendations in ​sections 5.3​ and ​5.2​ in RFC 6750. These tokens are purposely
shorter-lived as they do not have a token revocation mechanism; the token lifetime should be
shorter than the expected revocation response time for authorizations.

Refresh tokens and token revocation
Refresh tokens are credentials that can be used by client applications to obtain new access or
ID tokens (when such tokens are about to expire) or to obtain access tokens with identical or
narrower scope from an OAuth Authorization Server. Unlike access tokens, refresh tokens are
intended for use only with authorization servers and are never sent to resource servers.
Furthermore, the client needs to authenticate at the Authorization Server using its client
credentials when using its refresh tokens.

Refresh tokens are typically longer lived than access tokens, and are used in support of
long-running computational activities that last longer than the lifetime of a single access token.

As clarified in the ​OAuth specification​, Refresh tokens MUST be kept confidential in transit and
storage, and shared only among the authorization server and the client to whom the refresh
tokens were issued. Delegation across services in support of long-running jobs MUST leverage
the token exchange flow. Refresh tokens SHOULD be kept on centrally maintained (non-grid)
services while long-running jobs SHOULD get only access tokens . Grid jobs SHOULD NOT 16

be OAuth clients.

In order to contain security incidents related to the leakage of refresh tokens, it is recommended
that any solution that will be used as the WLCG OAuth authorization server MUST support the
OAuth token revocation standard​ (RFC 7009) at least for refresh tokens.

Claim and Token validation
The claims in a WLCG token are meant to indicate an identity or manage access to a resource.
For example, in the authorization schema, additional claims might add restrictions to the
corresponding bearer’s authorizations: if an unknown claim is skipped, the resource provider
may inadvertently offer overly-broad authorizations. On the other hand, requiring ​all​ claims to
be processed may reduce the flexibility and ability to add future features.

To handle this challenge, each token MUST provide a ​wlcg.ver​ (version) attribute, whose
value corresponds to an enumerated set of claims described earlier in this document. For that
version of the token format, the corresponding claims MUST be handled by the implementation.
Any additional claim present MUST be ignored (for access tokens, these claims MUST NOT be
used in authorization decisions).

16 The WLCG Authorization Working Group plans to produce guidelines for implementors on this
workflow.

25

https://tools.ietf.org/html/rfc6750-section-5.3
https://tools.ietf.org/html/rfc6750-section-5.2
https://tools.ietf.org/html/rfc6749#section-10.4
https://tools.ietf.org/html/rfc7009

Each client library implementation MUST know the versions it supports; if it encounters a token
whose ​wlcg.ver​ value is not supported by the implementation, the token MUST be rejected as
invalid.

Additionally, signature algorithms and RS256, ES256 MUST be supported.

Operational Impact of Verification and Refresh
For operational stability and scalability it would be desirable to put reasonable constraints on the
frequency at which token issuing services need to be contacted by the vast majority of relevant
workflows.

By design, access tokens should be issued not long before they are used and hence can have
short lifetimes. As a consequence, token issuers may already experience high request rates for
issuing tokens alone. The usage of tokens in ALICE grid workflows has demonstrated the
feasibility of such services on the scale of the LHC experiments, though some consideration
should be given to corresponding requirements on the experiment services that provide such
functionality. It would be desirable not to add yet more load on those services for other reasons.
For the verification of an access token there would ideally be no need to contact the issuer at
all, as is currently the case for VOMS proxies.

Access tokens are signed by keys with a lifetime for which a relatively short upper limit, as
defined above, is deemed desirable. Each grid service supporting such tokens will regularly
need to query each issuer for its set of currently valid public keys. For example, it might do that
a few times per day and cache the results, as is currently done for CRLs. Such functionality may
be similarly provided by an independent utility invoked by ​cron ​.

As access tokens typically will have short lifetimes of the order of 1 hour, there is no need to
implement any revocation for them, whereas a revoked public key would simply no longer be
served by the issuer.

As refresh tokens are longer-lived, different considerations apply to them. First, their maximum
lifetime may need to be able to bridge the many hours that a pilot job may spend in a batch
queue before it is able to start an actual user payload for which a fresh access token needs to
be obtained. Similarly, a file transfer request may need to wait for many hours or even days in
the queue of an FTS instance. Furthermore, certain payload jobs may need to run for many
hours before their output can be uploaded. Today, the longest payloads need at least the better
part of a day, possibly more. It would thus seem desirable to allow refresh tokens to have a
maximum lifetime of at least 1 day. It would also be desirable to have the maximum not much
higher, to limit the amount of damage that could be inflicted by a third party that came into
possession of such a token. As refresh tokens are only used to obtain fresh access tokens from
the original issuer, only the latter is concerned with refresh token revocation. The issuer is
expected to provide a service endpoint where any such token can be revoked by its owner. It

26

might be desirable for standard workflows to revoke a refresh token as soon as it is deemed to
be no longer needed, though that would add to the request rates experienced by the issuer.

Appendix

Discovery

What is Discovery (the metadata lookup process)?
For the ​OpenID connect discovery standard​ it is “a mechanism for an OpenID Connect Relying
Party to discover the End-User's OpenID Provider and obtain information needed to interact with
it, including its OAuth 2.0 endpoint locations.”

For the ​OAuth authorization server metadata​ standard it is “a metadata format that an OAuth
2.0 client can use to obtain the information needed to interact with an OAuth 2.0 authorization
server, including its endpoint locations and authorization server capabilities.”.

Well-known URIs
According to ​RFC 5785​, a well-known URI is a URI whose path component begins with the
characters “/.well-known/”, and whose scheme is "HTTP", "HTTPS", or another scheme that has
explicitly been specified to use well-known URIs.

The OpenID connect approach to well-known URIs
The OpenID Connect discovery mechanism states that the well-known URI for an OpenID
Connect provider is computed as follows (assuming the client knows the Issuer string of such
provider):

1. if the Issuer does not contain any path component, the openid-configuration is resolved
by querying the “/.well-known/openid-configuration” endpoint. Example: for
https://wlcg.example​ the configuration URI would be
https://wlcg.example/.well-known/openid-configuration

2. if the Issuer contains a path component, the “/.well-known/openid-configuration” path is
appended to the Issuer string after having removed any terminating “/” character.
Example: for ​https://wlcg.example/dteam​ the configuration URI would be
https://wlcg.example/dteam/.well-known/openid-configuration

As clarified ​here​, “using path components enables supporting multiple issuers per host. This is
required in some multi-tenant hosting configurations. This use of .well-known is for supporting

27

https://openid.net/specs/openid-connect-discovery-1_0.html
https://datatracker.ietf.org/doc/draft-ietf-oauth-discovery/
https://tools.ietf.org/html/rfc5785
https://wlcg.example/
https://wlcg-authz-wg.cloud.cnaf.infn.it/.well-known/openid-configuration
https://wlcg.example/dteam
https://wlcg.example/dteam/.well-known/openid-configuration
https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfigurationRequest

multiple issuers per host; unlike its use in RFC 5785, it does not provide general information
about the host.”

The OAuth approach to well-known URIs
The ​OAuth authorization server metadata standard​ states that:
“Authorization servers supporting metadata MUST make a JSON document containing
metadata as specified in Section 2 available at a path formed by inserting a well-known URI
string into the authorization server's issuer identifier between the host component and the path
component, if any. By default, the well-known URI string used is
"/.well-known/oauth-authorization-server”.

The OAuth approach is equivalent to the one standardized in OpenID connect discovery when
the Issuer URI does not contain path components. However the two standards differ when a
path component is present, since OpenID connect states that the well-known URI string is
appended to the issuer string (​https://example.com/issuer1/.well-known/openid-configuration​)
while OAuth states that the well-known URI should be inserted before the path component
(​https://example.com/.well-known/openid-configuration/issuer1​).

The OAuth discovery standard states also that “when deployed in legacy environments in which
the OpenID Connect Discovery 1.0 transformation is already used, it may be necessary during a
transition period to publish metadata for issuer identifiers containing a path component at both
locations. During this transition period, applications should first apply the transformation defined
in this specification and attempt to retrieve the authorization server metadata from the resulting
location; only if the retrieval from that location fails should they fall back to attempting to retrieve
it from the alternate location obtained using the transformation defined by OpenID Connect
Discovery 1.0.”

Based on the rules above, the OAuth and OpenID connect discovery standards are aligned for
single tenant OpenID Connect providers (assuming that path fragments are included in the
Issuer string only to support multi-tenant OpenID Connect provider deployments).

For multi-tenant OpenID Connect providers, WLCG AuthZ WG should recommend that all
providers and clients MUST support the OpenID connect discovery approach (given it is already
widely implemented and is the standardized approach for OpenID connect (RFC8414)).
Provider and client software MAY in addition also support the OAuth discovery approach
described above.

OpenID Connect/OAuth authentication and authorization flows for
WLCG

28

https://tools.ietf.org/html/rfc8414#section-3
https://example.com/issuer1/.well-known/openid-configuration
https://example.com/.well-known/openid-configuration/issuer1

This appendix provides a brief introduction for the main authentication/authorization flows
provided by OpenID Connect and OAuth that will be used by WLCG services to integrate
token-based authentication and authorization.

Confidential vs public clients
The OAuth specification defines two client application types (confidential and public) based on
their ability to authenticate securely with the authorization server:

● Confidential client applications (e.g., server-side applications) are capable of maintaining
the confidentiality of their credentials, or are capable of secure client authentication
through other means.

● Public client applications (e.g., Javascript single page or mobile applications running on
the user device) are by design incapable of storing client credentials in a secure way or
do not have other means that allow for secure client authentication.

Some authorization flows or capabilities are available only to confidential clients. Most WLCG
services can be classified as confidential clients.

Authorization flows

The image above, taken from ​here​, describes the abstract OAuth protocol flow. In OAuth
terminology, authorization flows describe the interactions among the roles defined above (a
client application, the user, the authorization and resource servers) to let a client application
obtain controlled access to protected resources with the (possibly implicit) authorization of the
end user owning such resources. OAuth/OpenID connect flows can be described as variations
of the abstract protocol flow in support of specific authentication and authorization scenarios.

29

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2

OAuth is about delegating access to resources to third-party applications. This delegation
process starts with an authorization request (step 1. in the figure above) issued by the
application that wants to access the resources to the user owning the resources to get an
“authorization grant”, i.e. a permission. Note that in some flows and under certain conditions
(e.g., a trusted client application, a previous user authorization stored in the authorization
server) the grant can be “implicit”, i.e. no explicit user intervention is required. The application
then exchanges the grant obtained from the user with an access token. This access token is
then presented to the resource server in order to get access to resources. The resource server
will validate the token and grant access to the requested resources only if the token presented
by the client application is valid and provides enough privileges to access the requested
resources.

Authorization code flow
The authorization code flow is defined in ​RFC 6749​ and extended in the ​OpenID Connect core
specification​. This flow is used to obtain access tokens, ID tokens and refresh tokens and is
optimized for confidential clients (i.e., server-side applications).
In WLCG, we require the use of the OpenID Connect version of the code flow, as described
here​, which in practice means that the “openid” scope must be always included in authorization
requests.

Refresh token flow
The ​refresh token flow​ is also targeted at confidential clients and is used to obtain new access
tokens when tokens are expired or about to expire. This flow does not require the user
presence, and is mainly used to support offline activities, when a client application needs to act
on behalf of a user for a possibly unbounded amount of time.
Refresh tokens can be obtained using any flow that support them (e.g., the authorization code
flow) by including the “offline_access” scope in authorization requests.

Device flow
The ​device flow​ is an authorization flow developed in support of devices with limited input
capabilities. In WLCG, we will use this flow mainly to support command line interface (CLI)
applications, while preserving the flexibility of using a browser for the user authentication flow.

Client credentials flow
Sometimes client applications need to interact with services in a way that is not bounded to any
specific user, but with the client application itself. In support of this use case OAuth provides the
client credentials flow​.

Token exchange flow
The ​OAuth token exchange​ flow can be used to implement delegation and token privileges
attenuation across a chain of services.

30

https://tools.ietf.org/html/rfc6749#section-4.1
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://tools.ietf.org/html/rfc6749#section-6
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-15
https://tools.ietf.org/html/rfc6749#section-4.4
https://tools.ietf.org/html/draft-ietf-oauth-token-exchange-19

Examples

Device flow token request example
The OAuth device code flow enables OAuth on devices that have internet connectivity but lack a
browser or an easy way to enter text. In this flow, the device instructs the user to open a URL on
a secondary device such as a smartphone or computer in order to complete the authorization.
There is no communication channel required between the user’s two devices.
It is convenient of our CLI use cases since it enables federated authentication from a terminal
(assuming the user has access to a browser, which is the case for most of our use cases). The
authorization flow is triggered by a registered client application with an HTTP POST request at
the Authorization Server device code endpoint:

POST /devicecode HTTP/2

Host: iam-escape.cloud.cnaf.infn.it

Authorization: Basic ZG9….EwxZnFsX2lWZmlSamR

User-Agent: curl/7.65.3

Accept: */*

Content-Length: 61

Content-Type: application/x-www-form-urlencoded

client_id=doma-test&scope=openid profile email offline_access

The authorization server authenticates the clients, and returns a user code, a device code and a
URL:

{

 "user_code": "41SGWX",

 "device_code": "da317e13-d881-4980-ad33-7f4db7169930",

 "verification_uri": "https://iam-escape.cloud.cnaf.infn.it/device",

 "expires_in": 1800

}

The user code and a URL are shown by the script to the user in a more palatable way:

Please open the following URL in the browser:

https://iam-escape.cloud.cnaf.infn.it/device

and, after having been authenticated, enter the following code when

requested:

31

41SGWX

Note that the code above expires in 1800 seconds...

Once you have correctly authenticated and authorized this device,

this script can be restarted to obtain a token.

Proceed? [Y/N] (CTRL-c to abort)

The user can then authenticate with his browser and grant access to the device client. Once the
authentication flow on the browser is complete, the user comes back to her terminal and types Y
to proceed.
The script then submits the following HTTP request:

POST /token HTTP/2

Host: iam-escape.cloud.cnaf.infn.it

Authorization: Basic ZG9….EwxZnFsX2lWZmlSamR

User-Agent: curl/7.65.3

Accept: */*

Content-Length: 104

Content-Type: application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:device_code&device_code=d

a317e13-d881-4980-ad33-7f4db7169930

And gets the back the requested tokens:

{

 "access_token":

"eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJzdWIiOiIyNDE2ODdlOC01Mzc0L

TQ1NDktYjlmNi1hMzg2NmYwYmY2ZGEiLCJzY29wZSI6ImVtYWlsIG9wZW5pZCBvZmZsaW

5lX2FjY2VzcyBwcm9maWxlIiwiaXNzIjoiaHR0cHM6XC9cL2lhbS1lc2NhcGUuY2xvdWQ

uY25hZi5pbmZuLml0XC8iLCJleHAiOjE1Njc3ODI2MzAsImlhdCI6MTU2Nzc3OTAzMCwi

anRpIjoiN2JhMDdlY2YtY2NkOS00MTA3LWJkMzMtOWRlNWNjOGJkMjU5In0.KRlCP26GI

qxcgK-B43j8cIQP8DSape9ekTyY46P6ojGQnfjLdZRS3sOvyWM6SGDRbsMdjfIr96iExt

2yj-82nVOiv6yq2MIxgmLI1Ue_gQYnI-D9fh75b6z-S6FhMwsbsE1Ox9s1BthPkbbofYV

wPCLNFKKga39qqSe-urUMN9E",

 "token_type": "Bearer",

 "refresh_token":

"eyJhbGciOiJub25lIn0.eyJqdGkiOiJmZTU0MGMzMi0xMDZlLTRhMDQtYjMyYy05MGNh

OTBjNzY2MDUifQ.",

 "expires_in": 3599,

 "scope": "email openid offline_access profile",

32

 "id_token":

"eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJzdWIiOiIyNDE2ODdlOC01Mzc0L

TQ1NDktYjlmNi1hMzg2NmYwYmY2ZGEiLCJhdWQiOiJkb21hLXRlc3QiLCJraWQiOiJyc2

ExIiwiaXNzIjoiaHR0cHM6XC9cL2lhbS1lc2NhcGUuY2xvdWQuY25hZi5pbmZuLml0XC8

iLCJuYW1lIjoiQW5kcmVhIENlY2NhbnRpIiwiZ3JvdXBzIjpbImVzY2FwZSIsImVzY2Fw

ZVwvcGlsb3RzIiwiZXNjYXBlXC94ZmVycyJdLCJwcmVmZXJyZWRfdXNlcm5hbWUiOiJhb

mRyZWEiLCJvcmdhbmlzYXRpb25fbmFtZSI6ImVzY2FwZSIsImV4cCI6MTU2Nzc3OTYzMC

wiaWF0IjoxNTY3Nzc5MDMwLCJqdGkiOiJkNDExNGEyNS0wZDA4LTRiNWEtYmQ1Zi00YzI

zYTM2NmZhODciLCJlbWFpbCI6ImFuZHJlYS5jZWNjYW50aUBnbWFpbC5jb20ifQ.XUjVH

QmBel1_W_7qlF62ysQKnjSMHSGtGTzVmNPKZkzuEiI3wGZiwJussPWkhC3-TiNtO--_G3

3kre6gXqJusYLEH-LUPYVcfBZ85KLPmmG17EE10XmKBFg3-eyonstaRAHoXwM4YHvMnA5

tgtkawZsry4ssSA2WZz7BKBhffWQ"

}

OAuth2 Auto-Discovery and Token Request
Suppose an end-user would like to request a token from the issuer at ​https://cmsweb.cern.ch​.
First, auto-discovery must be performed at the endpoint to determine the token issuer:

> GET /.well-known/openid-configuration HTTP/1.1

> User-Agent: curl/7.29.0

> Host: cmsweb.cern.ch

> Accept: */*

>

< HTTP/1.1 200 OK

< Content-Type: application/json

< Content-Length: 155

{

 "issuer":"https://cmsweb.cern.ch",

 "jwks_uri":"https://cmsweb.cern.ch//oauth2/certs",

 "token_endpoint":"https://cmsweb.cern.ch/oauth2/token"

}

From the JSON response, the endpoint the client must contact is at
https://cmsweb.cern.ch/oauth2/token​. Next, the client may perform an OAuth2 request against
this endpoint. In the case where the client has the ability to perform a traditional (for the WLCG
community) X509-client certificate authentication, it may connect to this endpoint and perform a
client credentials flow, utilizing the X509 client authentication as the implicit client credentials.
The HTTP request/response would look as follows:

> POST /oauth2/token HTTP/1.1

> User-Agent: curl/7.29.0

> Host: cmsweb.cern.ch

> Accept: */*

33

https://cmsweb.cern.ch/
https://cmsweb.cern.ch/oauth2/token

> Content-Length: 65

> Content-Type: application/x-www-form-urlencoded

>

grant_type=client_credentials&expire_in=3600&scope=storage.read:/home

/joe

< HTTP/1.1 200 OK

< Content-Length: 374

< Content-Type: application/json

<

{"access_token":

"eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6ImtleS1yczI1NiJ9.eyJpYXQ

iOjE1NTUwNjAxMjAsInN1YiI6ImpvZSIsImV4cCI6MTU1NTA2MDcyMCwiaXNzIjoiaHR0

cHM6Ly9kZW1vLnNjaXRva2Vucy5vcmciLCJqdGkiOiJhNDZhZTk5MS02ZjFjLTRlMDYtO

Tc5Yi05Njc5NjY3NDBhYmIiLCJ3bGNnLnZlciI6IjEuMCIsIm5iZiI6MTU1NTA2MDEyMC

wic2NvcGUiOiJzdG9yYWdlLnJlYWQ6L2hvbWUvam9lIn0.VOxWM_PV3aikQK875xs1Aab

Bmk3VvMLJZ9Rrp08juN9Jux-NMUwHQGANA3-dd4_IWGLYtmCn4lyr4aiPuGCRk5D35Or7

W1TjSTHmD116iuH3_U_WPgE5-TOGHnAYoE8nsdVUQ4UOKj64DqPOXABdBsgsqRML-MpYi

S5p6K2yhcIdPAk-M5kXYVWu2vr8A-VLUNXwM7oYoe9mJ_9_rYCZs-aWqZ-x22AmnoTtTV

Kx5Wur4cSmL308CBr-yltZf_OtM4eIjjrDFbioIjbl-hG-y51oJU0n7n07-hxHeqWXO6R

Wpo_fUWwrrlrm8FRJXbk_8d33bdhodQ5w8DwEbF79fQ", "token_type": "bearer",

"expires_in": 3600}

In this example, the payload has the following decoded contents:

{

 "wlcg.ver": "1.0",

 "jti": "a46ae991-6f1c-4e06-979b-967966740abb",

 "iss": "https://demo.scitokens.org",

 "sub": "joe",

 "nbf": 1555060120,

 "iat": 1555060120,

 "exp": 1555060720,

 "scope": "storage.read:/home/joe"

}

Note this is a very minimal token for this JWT profile, contains no group information, and does
not use a de-identified subject claim.

Example Identity Token

{

"wlcg.ver": "1.0",

"sub": "e1eb758b-b73c-4761-bfff-adc793da409c",

"iss": "https://dteam.wlcg.example",

34

"wlcg.groups": [

 "/dteam/VO-Admin",

 "/dteam",

 "/dteam/itcms"

],

"preferred_username": "aresearcher",

"nonce": "334b0e05b65a3",

"aud": "https:///dteam-test-client.example.com",

"auth_time": 1523363636,

"name": "A Researcher",

"exp": 1523365436,

"iat": 1523363636,

"jti": "aef94c8c-0fea-490f-9027-ff444dd66d8c",

"email": " ​a.researcher@cern.ch ​",
"eduperson_assurance" : [

 " ​https://refeds.org/assurance ​/profile/espresso ​"
],

"acr": "https://igtf.net/ap/authn-assurance/cedar"

}

In this example, the ​nonce ​, ​preferred_username ​, ​name ​and ​email ​ claims are derived
from the OIDC core specification and follow the rules prescribed there. For example, OIDC
specification states the relying party should NOT treat ​preferred_username ​ as a unique
identifier; this is also true in the WLCG profile.

Example Access Token with Groups

{

"sub": "e1eb758b-b73c-4761-bfff-adc793da409c",

"iss": "https://demo.scitokens.org",

"nbf": 1555059791,

"wlcg.ver": "1.0",

"aud": "https://dteam-test-client.example.com",

"exp": 1555060391,

"iat": 1555059791,

"jti": "aef94c8c-0fea-490f-9027-ff444dd66d8c",

"wlcg.groups": [

 "/dteam/VO-Admin",

 "/dteam",

 "/dteam/itdteam"

],

"eduperson_assurance": [

 "https://refeds.org/assurance/profile/espresso"

],

"acr": "https://igtf.net/ap/authn-assurance/cedar"

}

35

mailto:a.researcher@cern.ch
https://refeds.org/assurance/profile/espresso
https://refeds.org/assurance/profile/espresso

Example Access Token with Authorization Scopes
{

"sub": "e1eb758b-b73c-4761-bfff-adc793da409c",

"iss": "https://demo.scitokens.org",

"nbf": 1555059791,

"wlcg.ver": "1.0",

"aud": "https://dteam-test-client.example.com",

"exp": 1555060391,

"iat": 1555059791,

"jti": "aef94c8c-0fea-490f-9027-ff444dd66d8c",

"scope": "storage.read:/store storage.create:/store/mc/datasetA

compute.create:/",

"eduperson_assurance": [

 "https://refeds.org/assurance/profile/espresso"

],

"acr": "https://igtf.net/ap/authn-assurance/cedar"

}

36

