

Recent results of the RD50 collaboration

Marta Baselga on behalf of the RD50 collaboration

ETP - KIT

www.kit.edu

KIT - The Research University in the Helmholtz Association

RD50 collaboration

RD50 Collaboration: Radiation hard semiconductor devices for high luminosity colliders

- 60 institutes around the world
- 354 members
- 33 workshops (2001-2018) to discuss the results of the collaboration

RD50 Organization structure - 4 research lines

- Defect and material characterization
- Oetector characterization
- New structures
- Full detector systems

1. Defect and material characterization Reminder

Macroscopic effects

- Increase leakage current
- Changes in doping profile
- Decrease charge collection

[Evolution of Silicon Sensor Technology in Particle Physics, Hartmann, Springer 2017]

3

Activation Energy [meV] Activation Energy (meV)

Total traps concentration: 2.5×10¹⁴ cm⁻³ Total traps concentration: 1.6×10¹⁴

Sample C. [N] = 1.42×1015 cm-

ADA, #4.2. <100>, 5.0x10 14 n/om

XN = 2.5x10¹⁴ cm

Sample D, [N] = 2.0×1015 cm-3

AIDA, #5.1, <100>, 5.0x10 14 n/cm

EN.= 1.6x10¹⁴ cm

\rightarrow The total traps concentration is lower for higher [N] concentration

[Kaminski, RD50 Workshop, November 2014]

1. Defect and material characterization

NitroStrip project: Example for ongoing project on defect engineering

- Nitrogen enriched wafers show promising behavior after irradiation
- Fluence $5 \times 10^{14} \, n_{eg}/cm^2$:

Suppression of interstitials:

[W. von Ammon et al. J. Cryst. Growth 226, 19 (2001)]

1. Defect and material characterization

NitroStrip project: ALiBaVa measurements @800 V irradiated with 23 MeV protons

φ.22000 20000 ភ្ល៊ី18000 nit $\Phi = 10^{14} n_{oc}/cm^2$ 16000 – FZ Φ=10¹⁴n_{oc}/cm² 14000 - nit Φ=3×10¹⁴n_{ov}/cm 12000 FZ Φ=3×10¹⁴n_{ec}/cm 10000 nit $\Phi = 6 \times 10^{14} n_{ec}/cm^{3}$ 8000 FZ Φ=6×10¹⁴n.../cm nit $\Phi=10^{15}n_{eo}/cm^2$ 6000F $FZ \Phi = 10^{15} n_{oc}/cm^2$ 4000 2000F 0⊾ 0 2000 4000 6000 8000 10000 Annealing (h)

Strips and diodes fabricated on p-in-n FZ and nitrogenated FZ wafers
 No big difference between FZ and nitrogenated wafers after irradiation

[Baselga, 32nd RD50 Workshop, Hamburg 2018]

ALiBaVa Measurements at 800 V

1. Defect and material characterization NitroStrip: TSC measurements

23 GeV protons, Φeg = 1.4x10¹³ cm⁻² Neutrons, $\Phi_{en} = 1 \times 10^{13} \text{ cm}^{-2}$ 20 FZ-nitrogenated FZ-nitrogenated - FZ-standard FZ-standard 15 ium V_n, n≥2 H(140K)+H(152K) [SCurrent [pA] im Vn. [SCurrent [pA] Ci(+/0)+H(116K 10 H(40K) +H(116K) Ś E(30K) 5 H(40K) 0 0 0 50 100 150 200 50 100 150 200 T [K] т (к)

TSC measurements (annealing 80 min @ 60 °C)

[Fretwurst 33rd RD50 Workshop, CERN 2018]

Overview for NitroStrip project

- Nitrogen concentration is supposed to be 1.5 × 10¹⁵ /cm³
- It seems that the concentration is not high enough for an improvement

1. Defect and material characterization Mixed irradiation

How critical is the order of mixed irradiations?

 Samples were irradiated with 23 MeV protons at KIT and neutrons in Ljubljana (p-in-n material).

$\Phi = 3 \times 10^{14} n_{eq}/cm^2$		Φ = 3 $ imes$ 10 ¹⁴ n _{eq} /cm ²	Total:
protons	\rightarrow	neutrons	$\Phi = 6 \times 10^{14} n_{eq} / cm^2$
neutrons	\rightarrow	protons	Φ = 6 \times 10 ¹⁴ n _{eq} /cm ²

[Gosewisch 33rd RD50 Workshop, CERN 2018]

11.02.19 M. Baselga - Recent results of the RD50 collaboration LHC Radiation Damage Workshop, CERN

7

1. Defect and material characterization

Mixed irradiation

ALiBaVa measurements

The annealing charge also change with the irradiation order
Unexpected results, further analyses needed

[Gosewisch 33rd RD50 Workshop, CERN 2018]

2. Detector characterization Simulations TCAD - Overview

performance under irradiation

RD50 developed softwares

- KDetSim
- TRACS
- Weightfield2

Commercial TCAD softwares

- Synopsys sentaurus
- Silvaco

They are used to be able to foresee in maximum detail the sensors

Adjust radiation into the software for surface and bulk defects

[Villani 33rd RD50 Workshop, CERN 2018]

2. Detector characterization

Measurement techniques

- CV, IV
- e-TCT (edge Transient Current Technique)
- TPA-TCT (Two photon absorption-TCT)
- IBIC (Ion Beam Induced Current)

IBIC spectrum for LGAD

Gain vs Voltage for different positions within the sensor

3. New structures

LGADs - 50 µm thick sensors

- Thin sensors ideal for timings (4D, UFSD) are planned to be introduced in ETL (CMS) and HGTD (ATLAS).
- Strong acceptor removal
- Gallium or carbon implants?

After irradiation, the multiplication decreases

[NIMA 891 (2018) 68-77]

3. New structures

- Sensors close the the beam will receive higher radiation doses
- In order to compensate the acceptor removal (→ less gain) more bias voltage needs to be appied to have a similar collected charge as with unirradiated material

[Cartiglia, 33rd RD50 workshop CERN 2018]

1. Defect and material characterization LGADs

[Gurimskaya, 33rd RD50 workshop CERN 2018]

TSC comparison spectra for thin EPI diodes with different resistivity
 B_iO_i seems to be the responsible for acceptor removal

PE NN PVELL PVELL PVELL PSUB DVVELL DVVELL DVVELL

3. New structures

HVCMOS

Common fabrication of RD50-MPW1 LFoundry process

Acceptor removal constant for LGADs and CMOS

圡

LFoundry 150 nm

NWELL

PW

$$egin{aligned} & \mathcal{N}_{eff} = \ & \mathcal{N}_{eff0} - \mathcal{N}_{c} \cdot [1 - e^{(-c \cdot \Phi_{eq})}] + g_c \cdot \Phi_{eq} \end{aligned}$$

[Mandić 33rd RD50 Workshop, 2018 CERN]

3. New structures

- Well known technology, now in IBL working nicely
- New results show that they might work as a timing sensors also

Time comparison with LGAD

Similar results for the 3D and LGAD samples

[Kramberger 33rd RD50 Workshop, 2018 CERN]

4. Full detector systems

Test beams, timing applications

HL-LHC will have to recognize 200 simultaneous interactions

- Larger pile up
- Higher particle fluence
- \rightarrow RD53A chip prototype for HL-LHC Testbeam results at SPS

[Giannini 33rd RD50 Workshop, 2018 CERN]

[García Alonso 33rd RD50 Workshop, 2018 CERN]

[Macchiolo 33rd RD50 Workshop, 2018 CERN]

Conclusions

- RD50 is an active collaboration and growing, check last workshops!
- New projects are ongoing, preparing for new silicon detectors for the HL-LHC phase II upgrade

Future work

FCC fluence > $7 \times 10^{17} \, n_{eq} / cm^2$

Backup

Huhtinen defect type

Projections of vacancy positions

Project through 1 μ m of depth after fluence 10^{14} cm $^{-1}$

10 MeV protons Mainly isolated point defects (remember depth dimension)

> 24 GeV/c protons Isolated point defects and clusters

> > 1 MeV neutrons Almost only clusters

[Huhtinen CERN 2001, Si-RadHard Workshop]

Mixed irradiation Also for n-in-p samples

[Gosewisch 33rd RD50 Workshop, CERN 2018]

Annealing steps

Annealing steps

Step	Time	Temperature	Time at RT
number	[min]	[°C]	[h]
0	0	0	0
1	20	60	91
2	20	60	167
3	40	60	318
4	76	60	650
5	15	80	1871
6	30	80	4894
7	60	80	10007