

GEORG-AUGUST-UNIVERSITÄT Göttingen

FSP

Pixel Radiation Damage Measurements with ATLAS

Paolo Sabatini on behalf of ATLAS Pixel Group

LHC Pixel Radiation Damage Workshop 11.02.2019

BMBF-Forschungsschwerpunkt

AS-FXPFR

Bundesministerium für Bildung und Forschung

Outline

ATLAS Insertable B-Layer modules and front-ends (FE-I4)

Properties evolution with radiation fluence

Studies of property vs. time/luminosity/fluence

- Depletion voltage
 - Collision data (vs luminosity)
 - Beam test (before/after irradiation)
- Charge collection efficiency
- Lorentz angle

Depletion voltage vs. longitudinal position

Absorbed radiation fluence changes along the detector

Cross-check against leakage-current behaviour

Depletion voltage measurement

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Signal from FE such as: Charge ~ Amplitude ~ ToT with ToT = Time over Threshold Measure Charge vs. Module Bias Voltage (V) Underdepleted module:

Charge ~ Width_{depl} ~ \vee

Over-depleted module:

Depletion voltage: interception of the two regimes

HV [V]

Collision data

ATLAS performed dedicated

Track selection:

No shared clusters

p_⊤ > 1 GeV

(MIP)

voltage scans during data-taking

• Pixels multiplicity in clusters:

• $N_x < 4 - pitch = 50 \mu m$

Charge (ToT) distribution

→ Landau distribution on

• $N_v = 1 - pitch = 200 \mu m$

corrected by cos (inc. angle)

Minimum Ionisation Point

Fit of charge distribution → Most Probable Value (MPV) vs bias voltage

4

Beam test

Cluster ToT Both beams: MIP with perpendicular incidence

Fit of ToT distribution (~ charge) \rightarrow MPV vs. Bias voltage

f00

200

300

400

5

600

HV [V]

500

Results on depletion voltage

GEORG-AUGUST-UNIVERSITÄT Göttingen

> 93 fb⁻¹ ~ 5.4 x $10^{14} n_{eq}^{2}/cm^{2}$ 96 fb⁻¹ ~ 5.6 x $10^{14} n_{eq}^{2}/cm^{2}$

Measured depletion voltage as function of luminosity.

End Run II fluence ~ $10^{15} n_{eq}^{2}/cm^{2}$

Similar results observed in beam test and collsition data (2015 + 2018)

	Slope [V / fb ⁻¹]
Collision Data 2018	1.39 ± 0.10

Charge collection efficiency

GEORG-AUGUST-UNIVERSITÄT Göttingen

Studied as function of luminosity:

- Fit of charge distribution (corrected by incidence angle)
- Normalised for the sensor thickness (dE/dx)

Clear trend in luminosity, that is absorbed fluence.

Trend also in cluster shapes indicating a loss of collected charge. 160 fb⁻¹~ 9.4 x 10¹⁴ n_{eq}/cm²

Lorentz angle

GEORG-AUGUST-UNIVERSITÄT Göttingen

Ionisation charge drift azimuthal angle due to external magnetic fieldand bias electric field2015201620172018

[mrad]

angle

orentz

Sensor bulk defects change electric field

 \rightarrow Lorentz angle change

Defined as track incidence angle on the module that minimises the pixel multiplicity in cluster!

Clear trend in luminosity!

Detailed discussion in Javier's talk (later):

Fluence and longitudinal position

GEORG-AUGUST-UNIVERSITÄT Göttingen

Module along the pipe axis get different radiation fluence.

Two balancing effects going towards detector edges:

- Elastic pp XS increases
- Covered solid angle decreases

Absorbed fluence **decreases** towards detector edges.

Radiation effects on detector properties investigated wrt the center of the detector

Look at Sven's talk (tomorrow) https://indico.cern.ch/event/769192/contributions/3287299/

Depletion voltage

Different prediction from simulations \rightarrow how to know the relative fluence?

Relative fluence: **Φ(z)/Φ(0)**

- Leakage current very sensitive to radiation
- Model = fit on leakage current behaviour vs. z

Relative depletion voltage:

- Same trends for different periods
- Consistent with the expectations from the leakage current

Summary

Properties evolution with fluence

Depletion voltage

- Beam test and collision data comparison at similar absorbed fluences
- Similar results from both observations Charge Collection Efficiency
- Trends in dE/dx and cluster shapes indicate a loss of charge as expected
- Lorentz angle
 - Clear evolution with luminosity due to electric field change

Depletion voltage vs. longitudinal position

Different absorbed fluence along the detector

- Clear trend observed
- Consistent with leakage current evolution along the stave

Many thanks for your attention!