Silicon Strip Sensor Simulation in the CMS Monte Carlo Framework

n new prieriornena ...

Radiation effects workshop – Eric Chabert – 11/02/2019

Outline

- Overview of the CMS tracker simulation
- Overview of recent activities
- Cross-talk measurement
- Front-end electronic pulse shape
- S/N trend
- Dead time & inefficiencies
- Hit resolution

Overview of the CMS strip simulation

Overview of the CMS strip simulation

Overview of the CMS strip simulation

Recent activities on the CMS strip simulation

DB Offline DB conditions have been updated in 2018

Cross-talk parameters have been updated APV shape change under validation

Radiation effects workshop – Eric Chabert – 11/02/2019

"Cross-talk" measurement

Mainly due to interstrip capacitive coupling, a cross-talk induces signals on strip neighbors to the one under which a particle went through

Example of a « one strip » cluster :

- Measurements obtained from cosmics data with 0 T using DAQ in Virgin Raw mode (no zero suppression)
 - \rightarrow Lorentz Angle null
 - \rightarrow Remove threshold bias
- Methodology:
 - Selection of tracks perpendicular to the sensor
 - Correction for timing delays
 - Fit of the leading strip charge and its neighbors.

$$\eta_i \equiv rac{q_{\pm i}}{q_{seed}} = rac{x_i}{(1-2x_1-2x_2)}
onumber \ x_i = rac{\eta_i}{1+2\eta_1+2\eta_2}$$

"Cross-talk" measurement

Radius

11/02/2019

Front-end electronics pulse shape

The amplitude of the charge measured at a given bunch crossing in a FE channel depends on

- The time-of-flight on the incoming particle
- The OOT contributions from other BX

→ To reflect this behaviour, it is required to inject the knowledge on the timing response of the FE electronics

Front-end electronics (APV) pulse shape

Physical signal

→ Can be estimated through external dedicated program

Electronic response

 \rightarrow Is measured with dedicated runs where a charge is locally injected on the FE chip

Motivation for an update:

- \rightarrow Use a more realistic physic signal
- → As the FE preamplifier parameters have been changed in 2016, the electronic response has been modified
- Tails of the cluster charge and cluster width distributions contributions are sensitive to the FE pulse shape description
- Required for a good modelling of the OOT contributions

Evolution of S/N during Run II

- Noise is regularly monitored and updated thanks to dedicated runs
- Noise in MC has been updated to reflect detector changes
- S/N ratio is regularly monitored (within LHC fill, ...)

- Fit the S/N distribution with a convolution of *Laudau & Gaussian* functions
- MPV is reported
- Results obtained with FE chips (APVs) working in *deconvolution* mode (weighted average of 3 consecutive samplings)

Eric Chabert – 11/02/2019

Evolution of S/N during Run II

Dead time & inefficiencies

- Nuclear interactions can induce « **Heavy Ionizing Particle** » events where a charge deposit much larger than MIPs (10-1000x) can **saturate the electronics** and induce a **dead time**.
- HIP probability has been measured in the Tracker (per interaction and per unit of volumn).
- HIP events are responsable for the small **hit inefficiency** (<2%) that has been independently measured as function of pile-up (or luminosity).

Radiation effects workshop –

11/02/2019

Dead time & inefficiencies

- HIP effects were known and studied prior to data-taking
- The current simulation framework include the possibility to introduce inefficiencies
- Ongoing work done to include our current knowledge of the inefficiencies in the simulation

Hit resolution

The hit resolution achieved is better that pitch/ $\sqrt{12}$ thanks to the charge sharing and the barycenter algorithm

The hit resolution remains almost unchanged since the beginning of Run I

Radiation effects workshop -

Conclusions

- The CMS tracker simulation structure remained almost unchanged since Run I
- □ In general, the data/MC agreements are good and sufficient to describe properly downstream quantities (tracking, …)
- Nevertheless, efforts were done during Run II to further improve our simulation and updates were done through:
 - DB conditions (noise, gain)
 - Parameters (cross-talk, APV pulse shape)
- Radiation damage effects injected in the simulation are thus
 - □ Gain (optical chain) \rightarrow decreased
 - □ Noise → increased
- Dead time & inefficiencies
 - Measurements have been done
 - We expect to inject that knowledge in the simulation soon

□ Hit resolution almost unchanged since the beginning of Run I

Radiation effects workshop – Eric Chabert – 11/02/2019

Hit resolution

The resolution is measured as function of the predicted cluster width which depends on the trajectory

 $\frac{thickness}{pitch} |\tan\theta\cos\phi + \tan\theta_L|$

- In the reconstruction, we need to inject a « Cluster Position Error » (CPE).
- Parametrization have been made separately for small and large width clusters.
- For cluster with less than 5 strips, the CPE depends on the predicted cluster width.
- Hit resolution measurements validate this parametrization.