Simulation of SET/SEU in microelectronics: AFTU software

F.R. Palomo¹, F.Muñoz¹, F.Márquez¹, E.López-Morillo¹ Mohsine Menouni²

fpalomo@us.es

¹Departamento Ingeniería Electrónica, Escuela Superior de Ingenieros Universidad de Sevilla, Spain ²CPPM Centre de Physique des Particules de Marseille Marseille, France

Radiation effects in Electronics

SEU (bitflips) and SET (glitches)

Single Event Upsets (Red) affect to memory cells producing bit flips Single Event Transients (Blue) affect to any transistor, producing glitches SETs effects are harder to detect and can produce Cascade Bitflips

SEE and Critical Charge

$$Q_{\rm crit} = C_{\rm N} \cdot \Delta V_{\rm nm}$$

 $\begin{aligned} \tau_i: \text{ inverter intrinsic time constant} \\ C_O \text{ is the total output capacitance} \\ V_{dd} \text{ is the power rail voltage} \end{aligned}$

 τ_e : charge collection single event time constant (< 1ps)

 $\tau_e << \tau_i$ implies Single Event Effect (switching)

So at Critical node (Vout) the SEE induced ΔV is:

 $i_{SE}(t)$ is the single event photocurrent $Q_{collected}$ is the total charge delivered to/from the node by the single event photocurrent C_N is the total nodal capacitance

 Q_{crit} is the total charge delivered to/from the node by the single event photocurrent C_N is the total nodal capacitance ΔV_{nm} is the node voltage

Extreme Environment Electronics, J.D.Cressler, H.A.Mantooth (eds), CRC Press 2013, chap. 15

What is AFTU?

The <u>Analog FTU</u> Hardware Debugging System is a software tool to evaluate the <u>SEE sensitivity</u> of analog/mixed signal circuits at transistor level

How does it work? AFTU parses a Spectre design netlist...

...to generate a parametric simulation Ocean script

-Analysis of Transient Effects in Analogue Topologies, F.Marquez, F.Muñoz, F.R.Palomo, M.A.Aguirre and M.Ullán, AMICSA 2012, Noordvijk, Netherlands 26th -28th August 2012, http://microelectronics.esa.int/amicsa/2012/amicsa2012.htm
 -Automatic inspection of SET sensitivity in analog cells, F.Márquez, F.Muñoz, M.A.Aguirre, F.R.Palomo and M.Ullán, SMACD'12, Sevilla, Spain, 19th-21st Sept. 2012 http://www2.imse-cnm.csic.es/~smacd2012/SMACD_2012/HOME.html
 -AFTU, an analog single event effects automatic analysis tool, F.Marquez, L.Sanz, F.R.Palomo, F. Muñoz and M.A.Aguirre, AMICSA 2014, CERN, Switzerland, 30th June-1st July 2014, https://indico.cern.ch/event/277669/
 -Automatic Single Event Effects Sensitivity Analysis of a 13-Bit Successive Approximation ADC, F.Márquez, F.Muñoz, F.R.Palomo, L.Sanz, E.López-Morillo, M.Aguirre and A.Jiménez, IEEE Transactions on Nuclear Science,62(4) 2015, pp.1609-1616

...emulates Single Event Effects...

- 0 × Granh Window [43 File Edit Graph Axis Trace Marker Zoom Tools Help **Label** Transient Analysis `tran': time = (0 s -> 60 ns) -v("/I0/net32" ?result 'tran) -v("/Vout" ?result 'tran) v("/I0/net32" ?result 'tran) -v("/Vout" ?result 'tran) -v("/I0/net32" ?result 'tran) -v("/Vout" ?result 'tran) v("/I0/net32" ?result 'tran) =v("/Vout" ?result 'tran) v("/I0/net32" ?result 'tran) v("/Vout" ?result 'tran) v("/I0/net32" ?result 'tran) -v("/Vout" ?result 'tran) 1.1 1.0 ŝ 5 20 10 30 40 50 60 time (ns) cadence

An injection current source at every node or at user selected nodes is the way to emulate the SEE. The injection source model can be changed.

... and evaluates vulnerabilities

The final result is a list of

node in the design.

- The user defines injection and evaluation zones
- and select the appropriate hard coded heuristic to analyze the parametric simulation results

D-latch circuit, STMicroelectronics 130 nm

MN1: MP1. SEU Oini 10% 30% vulnerabilities (in terms of the heuristic) for each user selected MP18: Qinj SEU 0.05 50% 80% 0.1 0.3 100 MP14, MN14: MP11, MN11: MP8, MN8: Qinj SEU Qinj SEU Qinj SEU 40% 0.3 0.05 40% 0.02 60 50% 0.5 0.1 50% 0.05 80% 60% 80% 0.2 100 MN19: Qinj SEU 0.02 60% 0.2 90% 0.3 100%

User Web Interface (Fault Injection Campaign)

<u>A</u> rchivo <u>E</u> ditar <u>V</u> er Historial <u>M</u> arcadores Herramien <u>t</u> as Ayuda		
Roundcube Webmail :: Entrada × 🐓 ftu.us.es/uff/ × +	+	
← → C' ftu.us.es/uff/		⊠ ☆
📀 esa 👔 🧭		
🔒 AFTU_test 🔤 Files		Ξ
A		
℃ 11_1812M_u1_2	^	^
℃ I1_18I2M_u1_1	Charges (Q): 0.5p	
℃ I1_18I2M_u2_1	Times (t): 2n:6n:1n	
℃ I1_18_I2_M_u2_3	<pre>% I1_19_I2_M_u1_3</pre>	
℃ [©] I1_18I2M_u2_0	Charges (Q): 0.5p	
℃ I1_18_I2_M_u2_2	Times (t): 2n:6n:1n	
⁰⊑⁰ I1_18I4M_u1_0	<pre>% I1_19_I2_M_u1_2</pre>	
°⊑ l1_18l4M_u1_3	Charges (Q): 0.5p	
°⊑⁰ I1_18I4M_u1_2	Times (t): 2n:6n:1n	
°⊑ I1_18I4M_u1_1	<pre> I1_19_I2_M_u1_1 </pre>	
℃ [©] I1_18I4M_u2_1	Charges (Q): 0.5p	
℃ <mark>©</mark> I1_18I4M_u2_3	Times (t): 2n:6n:1n	
℃ [©] I1_18I4M_u2_0		
℃ I1_18I4M_u2_2	Charges (Q): 0.5p	
℃ <mark>11_18I3</mark> MI3	Times (t): 2n:6n:1n	
°⊑ I1_18_I3_M_u1	<pre>% I1_19_I2_M_u2_3</pre>	
°⊑⁰ I1_18_I3_MI4	Charges (Q): 0.5p	
℃ I1_18I3M_u2	Times (t): 2n:6n:1n	
°⊑° I1_18M0	<pre>// I1_19_12_M_u2_0</pre>	
° <u>C</u> I1_18M2	✓ Charges (Q): 0.5p	~

Hard Coded Heuristics

<u>Deviation Recovery</u> (ex. analog circuits SET's)

<u>Time Ranges</u> (ex. digital SEU's & differential circuits SET's)

User Web Interface (Heuristics)

<u>A</u> rchivo	<u>E</u> ditar <u>V</u> er Hi <u>s</u> torial <u>M</u> arcadores	s Herramien <u>t</u> as Ay <u>u</u> da			
🍚 Roun	idcube Webmail :: Entrada 🗙 🏼 🗧	ftu.us.es/uff/	× +		
\leftarrow	C 🛈	(i) ftu.us.es/uff/		⊘	☆
	esa 🚡 🧑				
🔒 AFT	rU_test				
01	technology:			cern65	^
æ	watch path:			watch	
Ŧ	inject path:			inject	-
22	source path:			netlist.sources	- r
	Output				
0	script path:			aftu_SEU_LPF.lisp	
0	results path:			/home/nandoml/Escritor	
	Analysis				
0	netlist path:			/home/nandoml/cadenc	
0	gold path:			/home/nandoml/Escritor	
Ø	rad path:			/home/nandoml/Escritor	
4	heuristic:			deviation_recovery	-
0	analysis time:			deviation_recovery	
Ø	analysis unit:			time_ranges	_
0	analysis step:			0.1ns	
Ø	analysis type:			tran	
0	analysis accuracy:			conservative	
Ø	initial injected charge:			0	
0	initial impact time:			0	
Ø	enable plotting:			true	
17	analysis initial time.			0	¥

Analysis of FE-I4 DICE structures

- Circuit schematics (interleaved version)
 - Increased robustness against SET/SEU due to DICE structure
 - Only affected by simultaneous impacts at n1,n3 or n2, n4

- Impacts at 4 different times (0.5, 1.25, 2.5, 3.25 ns) in every transistor of the DICE
 - Every possible input/output state is studied

- Impacts at 4 different times (0.5, 1.25, 2.5, 3.25 ns) in every transistor of the DICE
- According to results, there are 4 classes of transistors:

Class I: no effect on the latch output

Class II: transient glitch at the latch output, with no permanent effect (SET)

Class III: a change of the state at the output (SEU)

➤Class IV: a pair of transistors simultaneously impacted that generate a SEU at the latch output.

Qinj	Class	Transistors
	1	All except class II
0.05 pC	П	M10, M11, M9, M3
	Ш	None
	IV	(M11-M8), (M11-M2), (M10-M7), (M10-M1)
	1	All except class II
0.1 pC	П	M10, M11, M9, M3
	Ш	None
	IV	(M11-M8), (M11-M2), (M10-M7), (M10-M1), (M11-M6), (M11-M5),
		(M10-M0), (M10-M4), (M7-M9), (M7-M0), (M7-M4), (M9-M1),
		(M9-M0), (M9-M4), (M3-M2), (M3-M5), (M3-M6), (M8-M3), (M8-M6)
	1	M7, M8, M2, M1, MU1_X_M_u3
0.2 pC	П	M10, M11, M9, M3
	Ш	M0, M4, M6, M5, MU1_X_M_u2
	IV	(M11-M8), (M11-M2), (M10-M7), (M10-M1), (M11-M6), (M11-M5),
		(M10-M0), (M10-M4), (M7-M9), (M7-M0), (M7-M4), (M9-M1),
		(M9M0), (M9-M4), (M3-M2), (M3-M5), (M3-M6), (M8-M3), (M8-M6)
	1	M7, M8, M2, M1, MU1_X_M_u3
0.3 pC	П	M10, M11, M9, M3
	Ш	M0, M4, M6, M5, MU1_X_M_u2
	IV	(M11-M8), (M11-M2), (M10-M7), (M10-M1), (M11-M6), (M11-M5),
		(M10-M0), (M10-M4), (M7-M9), (M7-M0), (M7-M4), (M9-M1),
		(M9-M0), (M9-M4), (M3-M2), (M3-M5), (M3-M6), (M8-M3), (M8-M6)

- Impacts in every transistor of the DICE for different values of injected charge
- "Secondary latch" seems safe when simple impacts are performed

Qinj	Class	Transistors
	1	All except class II
0.05 pC	П	M10, M11, M9, M3
	Ш	None
	IV	(M11-M8), (M11-M2), (M10-M7), (M10-M1)
	1	All except class II
0.1 pC	П	M10, M11, M9, M3
	Ш	None
	IV	(M11-M8), (M11-M2), (M10-M7), (M10-M1), (M11-M6), (M11-M5),
		(M10-M0), (M10-M4), (M7-M9), (M7-M0), (M7-M4), (M9-M1),
		(M9-M0), (M9-M4), (M3-M2), (M3-M5), (M3-M6), (M8-M3), (M8-M6)
	1	M7, M8, M2, M1, MU1_X_M_u3
0.2 pC	П	M10, M11, M9, M3
	Ш	M0, M4, M6, M5, MU1_X_M_u2
	IV	(M11-M8), (M11-M2), (M10-M7), (M10-M1), (M11-M6), (M11-M5),
	(M10-M0), (M10-M4), (M7-M9), (M7-M0), (M7-M4), (M9-M1),	
		(M9M0), (M9-M4), (M3-M2), (M3-M5), (M3-M6), (M8-M3), (M8-M6)
	1	M7, M8, M2, M1, MU1_X_M_u3
0.3 pC	П	M10, M11, M9, M3
	Ш	M0, M4, M6, M5, MU1_X_M_u2
	IV	(M11-M8), (M11-M2), (M10-M7), (M10-M1), (M11-M6), (M11-M5),
		(M10-M0), (M10-M4), (M7-M9), (M7-M0), (M7-M4), (M9-M1),
		(M9-M0), (M9-M4), (M3-M2), (M3-M5), (M3-M6), (M8-M3), (M8-M6)

- Impacts in every transistor of the DICE for different values of injected charge
- "Secondary latch" seems safe when simple impacts are performed
- DICE structure → No class
 III transistors expected

Class III transistors

• A single impact in transistor M0 affects nodes 1 & 3 of DICE latch \rightarrow SEU (class III)

A SET (glitch) in LOAD line produces a cascade of bitflips!

Results

- AFTU predicts that SETs in the LOAD line produce a SEU cascade downstream
- From experiments: they confirm AFTU predictions, see next talk, "SEU/SET results in ATLAS IBL FE-I4-B" by Marcello Bindi

Thanks for your attention fpalomo@us.es

AFTU ToolChain

cadence	
many files	
netlist	

Before using AFTU:

- The user designs a circuit with Cadence as usual.
- The design is simulated through a testbench.
- Of all files generated by Cadence, we pick the **netlist**.

AFTU instrumentalize

The instrumentalizer implements a parser for the SPECTRE

language

- Replaces the **netlist** with a *functionally identical* one allowing SEE emulation.
- **netlist.nodes** lists all observable circuit nodes.
- netlist.sources lists all transistors where an impact can be emulated.

AFTU ocean init

AFTU projects are flexible and give the user many options for analysis.

- config contains paths, times, heuristics parameters, initial values...
- watch defines all elements in the circuit to be observed during the simulation
- **inject** defines where, when and how much charge we inject (SEE emulation).

AFTU Ocean cook

From all this data an Ocean simulation script is produced

- Includes all paths and required data.
- Describes the way to perform the user defined test campaign.
- Defines how to analyze the results of the campaign.

AFTU campaign

Cadence runs the provided script. It produces a CSV file with the desired statistics. This uncovers radiation vulnerabilities in the circuit.

A Practical Example

Let's say we have this circuit:

What is the critical charge to produce a SEU?

Netlist

D-latch transient testbench and schematic view of the digital cell STMicroelectronics 130 nm

Watch & Inject


```
watch Q = /Q :
    threshold = 0.975 ;
```

```
inject I0_MP19:
    Q = .025p, .05p, 0.1p, .2p, .5p, .75p, 1p, 1.5p;
    t = 1.0n, 1.1n, 1.2n, 1.3n, 1.4n, 1.5n, 1.6n, 1.7n, 1.8n, 1.9n;
inject I0_MN19:
    Q = .025p, .05p, 0.1p, .2p, .5p, .75p, 1p, 1.5p;
    t = 1.0n, 1.1n, 1.2n, 1.3n, 1.4n, 1.5n, 1.6n, 1.7n, 1.8n, 1.9n;
inject I0_MP18:
    Q = .025p, .05p, 0.1p, .2p, .5p, .75p, 1p, 1.5p;
    t = 1.0n, 1.1n, 1.2n, 1.3n, 1.4n, 1.5n, 1.6n, 1.7n, 1.8n, 1.9n;
```


Results

Outpu	t Impa	ctNode Qi	nj Timp	Trec	Vmax		Output	Impac	tNode Qi	nj Timp	т с	Trec	Vmax	
V_Q	10_M	P18 2.5e	-14 1e-09	0.000	000 0.001	1941	V_Q	10_M	l11 2.5e	-14 1e-0	99 e	000000	0.006	827
	v_Q	10_MP18	2.5e-14	1.1e-09	0.000000	0.00219	V_Q	10_M	l11 2.5e	-14 1.96	e-09 0	000000	0.016	568
V_Q	10_M	P18 2.5e	-14 1.9e	-09 0.00	000 0.003	3664	V	_Q	I0_MN11	5e-14	1e-0	9 0.00	00000	0.017084
	V_Q	I0_MP18	5e-14	1e-09	2.000000	1.807421								
	V_Q	I0_MP18	5e-14	1.1e-09	1.910000	1.807422	V	_Q	I0_MN11	5e-14	1.3e	-09 0.00	00000	0.005371
	V_Q	I0_MP18	5e-14	1.2e-09	1.800000	1.807426	V	_Q	I0_MN11	5e-14	1.4e	e-09 1.61	10000	1.806680
	V_Q	I0_MP18	5e-14	1.3e-09	1.700000	1.807384	V	_Q	I0_MN11	5e-14	1.5e	e-09 1.50	00000	1.806814
							V	Q	I0_MN11	5e-14	1.6e	-09 1.40	00000	1.805740
	v_q	I0_MP18	5e-14	1.8e-09	0.000000	0.519730	V	Q	I0_MN11	5e-14	1.7e	-09 1.30	00000	1.802925
	v_q	I0_MP18	5e-14	1.9e-09	1.100000	1.803023	V	Q	I0_MN11	5e-14	1.8e	-09 0.24	10000	1.404223

"Deviation Recovery" heuristic analysis

Results

D-latch circuit , STMicroelectronics 130 nm

For this particular test, we shot at 10 different instants per period to obtain a sensitivity percentage: for example if 7 impacts generate a SEU we have a sensitivity of 70%

