Beam parameters and machine performance to be reached in 2010

R. Assmann, M. Ferro-Luzzi, M. Giovannozzi, W. Herr, J. Jowett, M. Lamont, E. Shaposhnikova

Introduction - I

- The objective is:
 - Derive detailed beam parameters' tables taking into account:
 - Experiment desiderata (see Massimiliano's talk)
 - Machine protection constraints (aperture, collimation settings, maximum intensity...)
 - Beam dynamics considerations (performance reach, crossing angle, collision schedules...)
 - Evolution of beam parameters (see Mike's talk)
 - All three topics covered by many talks at LMC in 2009 (Ralph, Massimiliano , Werner, Mike).

See <mark>Werner's</mark> talk

Introduction - II

- Experiment desiderata (very, very short summary):
 - ATLAS and CMS, as well as LHCb, require the highest possible integrated luminosity. Pile up will not be a problem.
 - Alice needs to squeeze the optics.
- Machine protection constraints:
 - Intermediate collimator settings. This implies that n1> 10.5
 - Maximum intensity: 5×10¹³p

Introduction - III

- Beam dynamics considerations:
 - Minimum beta* without crossing angle: 2 m
 - Minimum beta* with crossing angle: 2.5 m
 - Crossing angle is mandatory to widen the performance reach
 - Trains (based on 50 ns spacing) are the solution (new bunches do not add new beam physics issues)
- Evolution of beam parameters:
 - Go to a given intensity/bunch and then add more trains

Proposed parameters evolution - I

Step	E [TeV]	Fill scheme	N	β* [m] IP1 / 2 / 5 / 8	Run time (indicative)		
1	0.45	2x2	5x10 ¹⁰	11 / 10 / 11 / 10			
2	3.5	2x2 2 - 5x10 ¹⁰ 11 / 10 / 11 / 10		Weeks			
3	3.5	2x2*	2 - 5x10 ¹⁰	2 / 10 / 2 / 2	1		
4	3.5	43x43	5x10 ¹⁰	2 / 10 / 2 / 2	Mooke / Monthe		
5	3.5	156x156	6 5x10 ¹⁰ 2/10/2/		Weeks/Months		
6	3.5	156x156	9x10 ¹⁰	2 / 10 / 2 / 2			
7	3.5	50 ns - 144**	7x10 ¹⁰	2.5 / 3 / 2.5 / 3	Months		
8	3.5	50 ns - 288	7x10 ¹⁰	2.5 / 3 / 2.5 / 3			
9	3.5	50 ns - 720	7x10 ¹⁰	2.5 / 3 / 2.5 / 3	Months		

* Turn on crossing angle at IP1.**Turn on crossing angle at all IPs.

Proposed parameters evolution - II

Step	Phase	N	N _b ^{max}	N _{tot} /N _{tot} ^{nom} [%]	E _{beam} [MJ]	L [cm ⁻² s ⁻¹]
2/3	Beam commissioning – respecting safe beam limit	2x10 ¹⁰	2	0.01	0.02	3.6x10 ²⁸
3	Pilot physics – squeeze to target values	3x10 ¹⁰	43	0.4	0.7	1.7x10 ³⁰
4		5x10 ¹⁰	43	0.7	1.2	4.8x10 ³⁰
5		5x10 ¹⁰	156	2.4	4.4	1.7x10 ³¹
5/6		7x10 ¹⁰	156	3.3	6.1	3.4x10 ³¹
7	Bring on crossing angle – truncated 50 ns.	7x10 ¹⁰	144	3.1	5.7	2.5x10 ³¹
8		5x10 ¹⁰	288	4.4	8.1	2.6x10 ³¹
8/9		7x10 ¹⁰	432	9.3	17	7.5x10 ³¹
9		7x10 ¹⁰	796	17.1	31.2	1.4x10 ³²

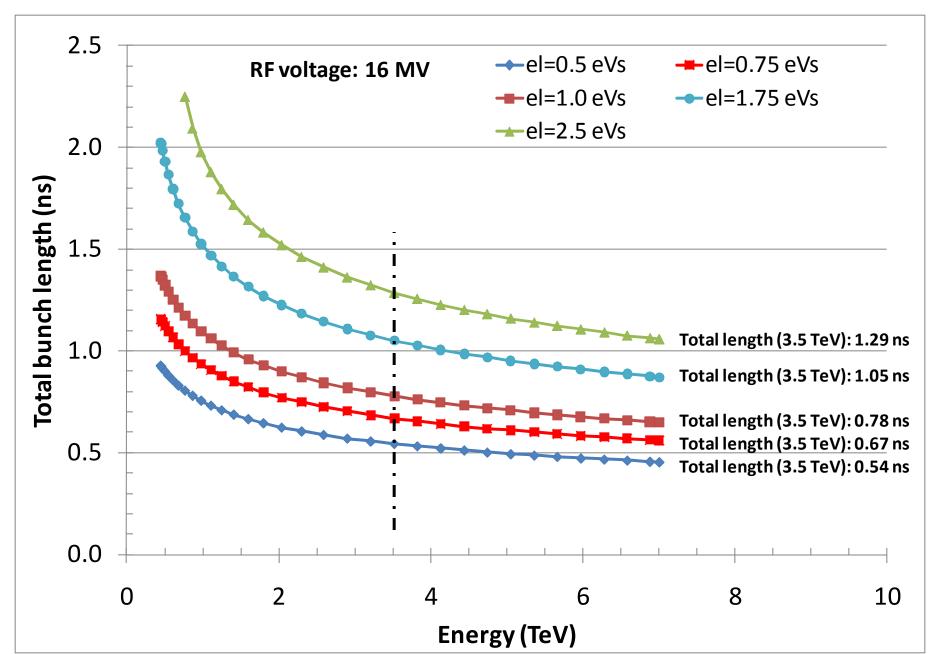
See also Mike's talk

20/01/2010

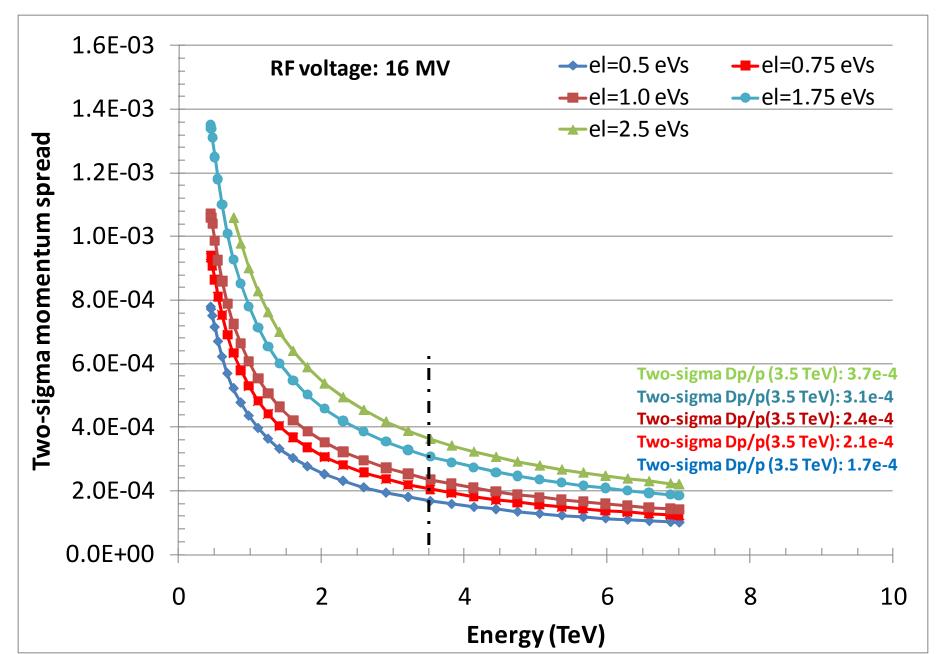
Proposed collision schedules

• Tables for collision schedules collected for the configuration without crossing angle:

43	A E	3	С	D	E
IP1	43	39	43	43	43
IP2	42	38	34	21	4
IP5	43	39	43	43	43
IP8	0	4	4	11	19

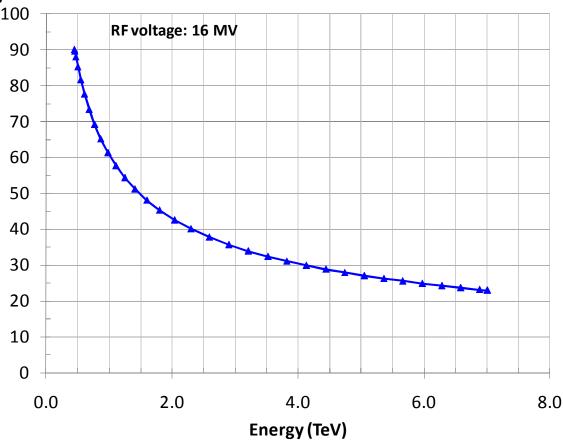

• The flexibility is very important! It enables changing the luminosity in IR2 without varying the optics (un-squeeze) or the crossing scheme (colliding partially separated bunches).

Longitudinal parameters - I


Different options to increase the longitudinal emittance are available. Typical values are:

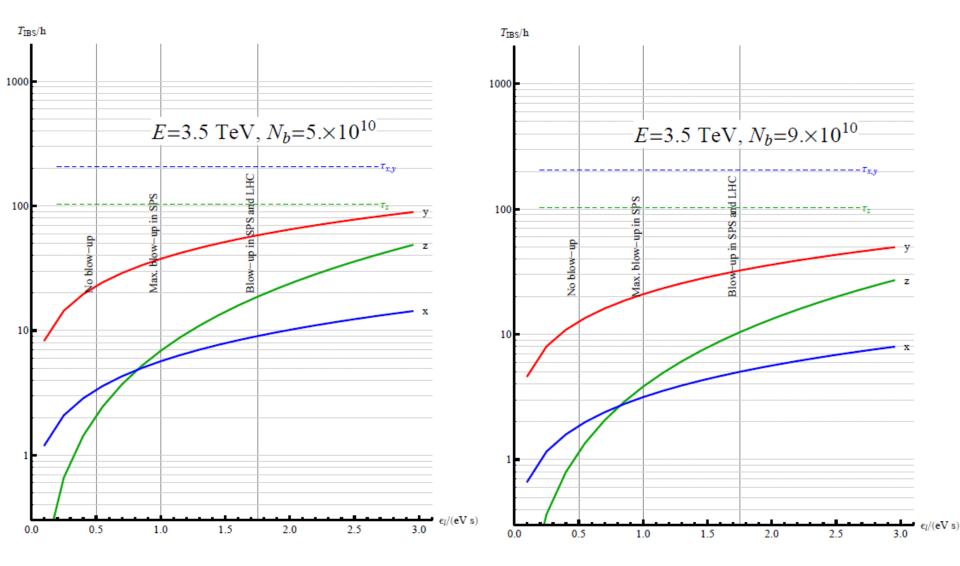
- 0.5 eVs corresponds to the natural longitudinal emittance delivered by the SPS.
- 0.75 eVs corresponds to the emittance after applying longitudinal blow-up in the SPS (required for stability of nominal intensity beam in the SPS) and filamentation at LHC injection.
- 1.00 eVs corresponds to the combination of maximum blow-up in the SPS (not tried yet) and filamentation at LHC injection.
- 1.75 eVs corresponds to the emittance value required to have the same beam stability at 3.5 TeV as at 450 GeV, achievable only with controlled blow-up in the LHC.
- 2.5 eVs is the nominal value at 7 TeV.

Longitudinal parameters - II



Longitudinal parameters - III

Longitudinal parameters - IV

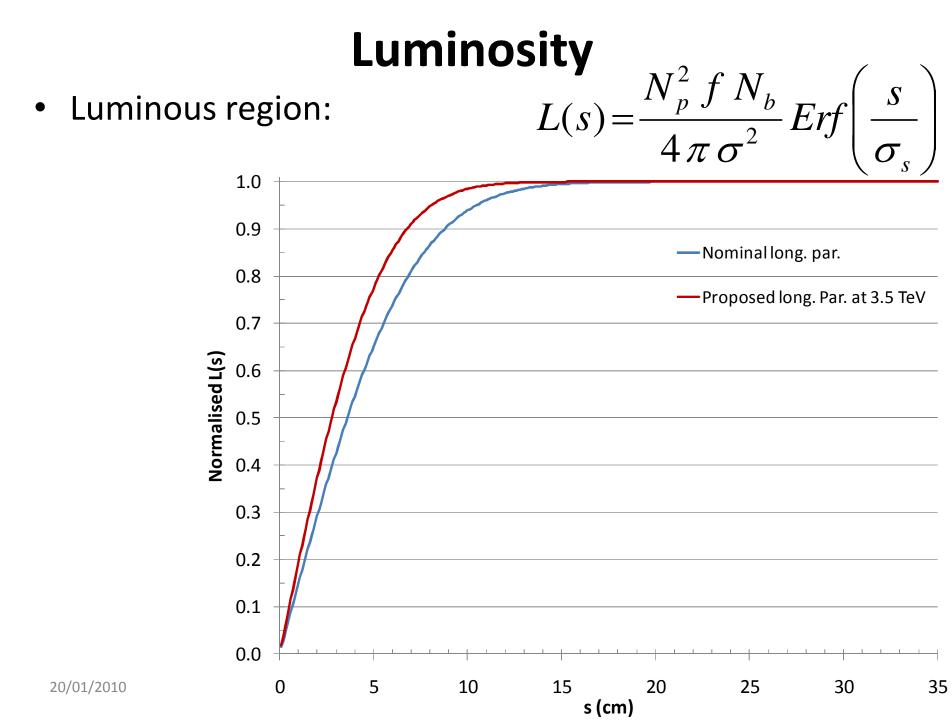

- Do we have to worry about 50 Hz crossing of synchrotron frequency?
- In the case of the special parameters for the initial run no harmful effects are to be expected.

• In particular, fs will cross 50 Hz far away from 3.5 TeV/c.

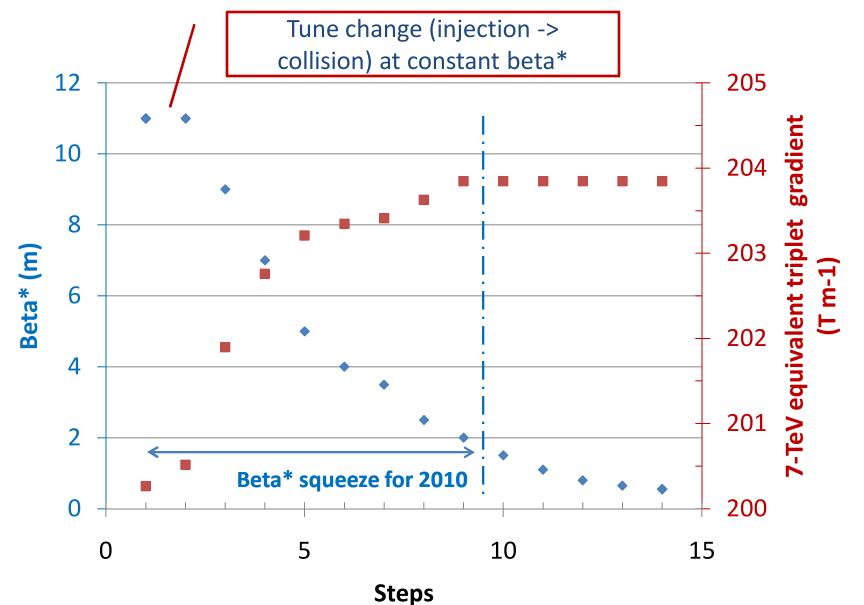
M. Giovannozzi - LHC BC Workshop Evian 2010

IBS Summary at 3.5 TeV/c proton beams

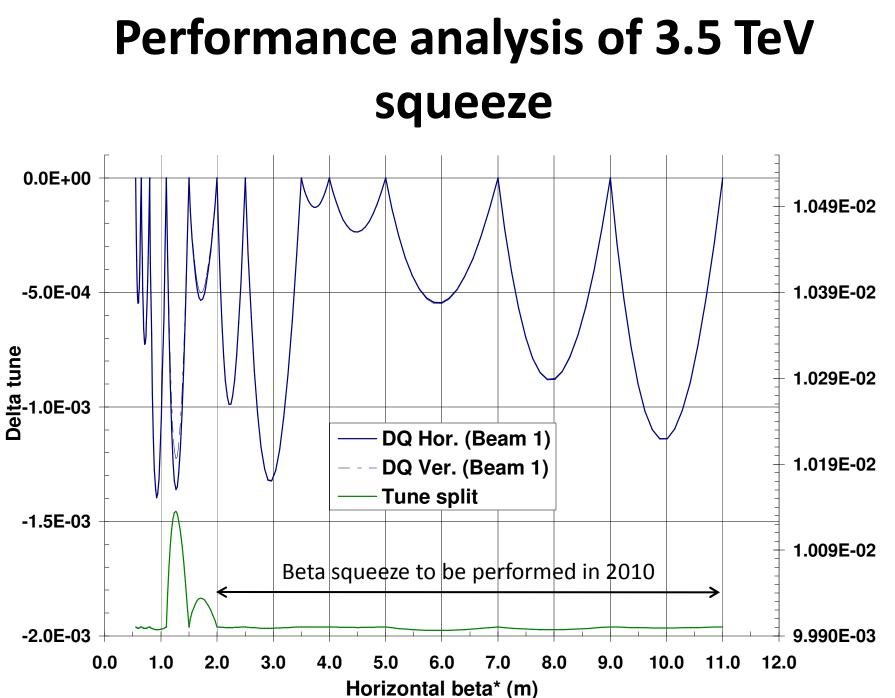
M. Giovannozzi - LHC BC Workshop Evian


Comments on longitudinal parameters and IBS

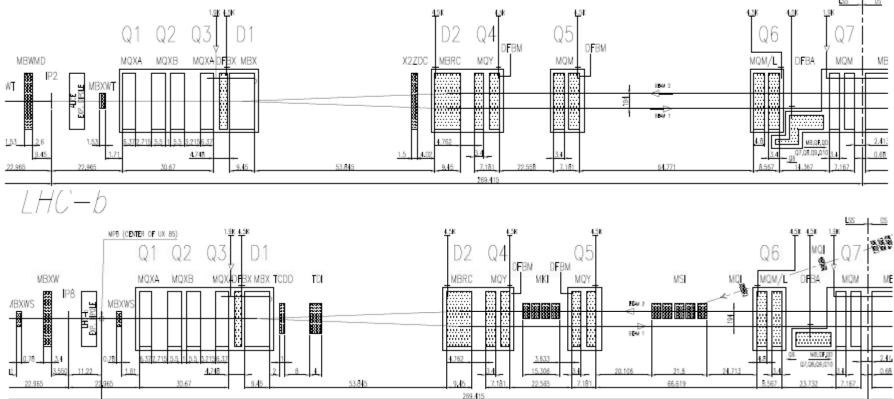
- The value of emittance which ensures that the beam will be stable up to the intensities considered is not known.
- The value of 1 eVs would not require any special effort to blow it up in the LHC. The blow-up of the longitudinal emittance by IBS will also help to stabilise the transverse emittance. However the initial transverse IBS growth rates are rather fast and might require some additional blow-up of the longitudinal emittance in the LHC.
- The growth rates are simply proportional to bunch intensity. The values plotted are calculated in the absence of betatron coupling with the small vertical growth being due to the crossing-angle bumps.
- In reality, the coupling will tend to share the growth between horizontal and vertical planes, potentially lengthening the horizontal growth time by a factor ~1.8–2. This curve can be regarded as a worst case. The general problem is the loss of Landau damping leading to longitudinal instability.


IBS and Radiation Damping Summary

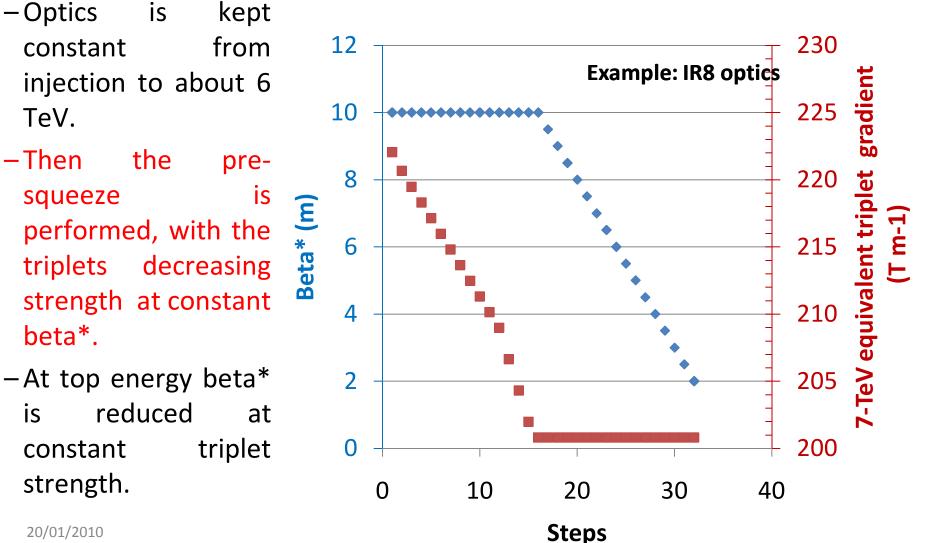
IBS effects		N _b =5×10 ¹⁰	N _b =9×10 ¹⁰
Longitudinal emittance growth time	h	9	4
Transverse emittance growth time	h	8	3
Synchrotron radiation effects			
Power radiated per proton	W	1.15×10 ⁻¹²	1.15×10 ⁻¹²
Power radiated/m in arc	W/m	9.29×10 ⁻⁵	6.07×10 ⁻⁴
Power radiated per ring	W	1.62	10.61
Critical energy of photons	eV	5.52	5.52
Longitudinal emittance damping time	h	103	103
Transverse emittance damping time	h	206	206


• Transverse synchrotron radiation damping is much weaker than IBS growth in all practical cases.

Optics configuration for 3.5 TeV in IR1/5

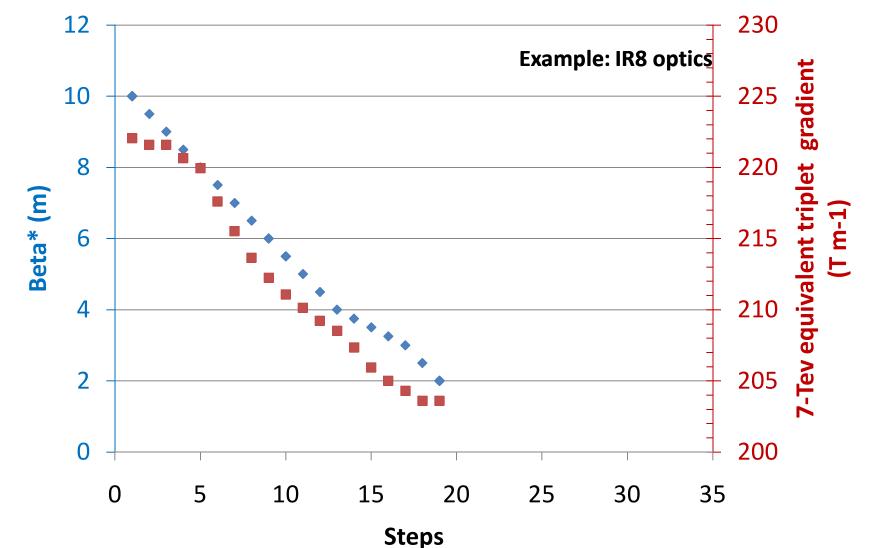

- -

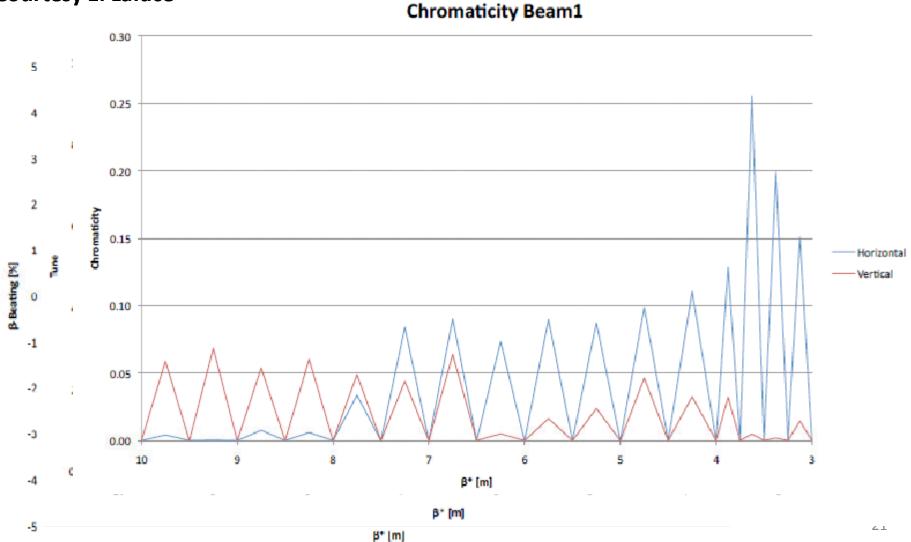
Fune split


Special situation of triplets in IR2/8 - I

- Injection process imposes a number of constraints on phase advance (kicker/septum, kicker/TDI).
- Solution presented in LHC PR Notes 188 (IR2) and 193 (IR8) by O. Brüning.
- The gradient for injection optics is 222 T/m. ALICE

Pre-squeeze for nominal configuration


• Triplets acceptance tests were performed up to 230 T/m. However it was decided to limit the magnets to 215 T/m. Hence:


20/01/2010

Pre-squeeze for 3.5 TeV

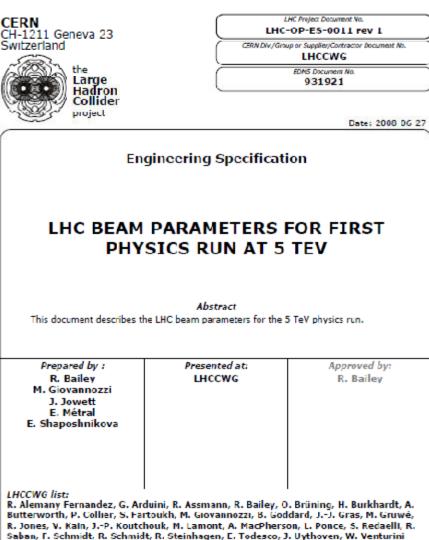
• No pre-squeeze is foreseen at 3.5 TeV separate from the actual squeeze.

Performance analysis of 3.5 TeV squeeze

Courtesy E. Laface

Some comments on spectrometers

- LHCb
 - The preferred option would be to leave the spectrometer at nominal field from injection to top energy.
 - This is not possible for one of the two polarities.
 - For the "bad" polarity the spectrometer will have to be ramped.
- ALICE
 - The spectrometer is supposed to remain at nominal field from injection to top energy.
 - Change of polarity is not a problem.
- A side remark: could the ALICE spectrometer and/or its compensators be the source of the perturbation generating the "hump"? EPC experts are verifying the performance of the power converters.

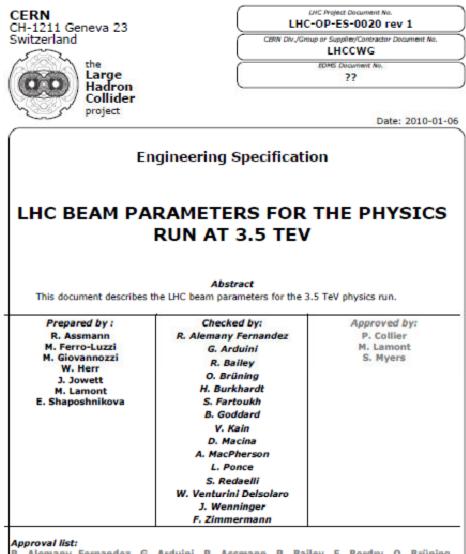

2010

Some general comments on optics

- Settings are generated starting from MAD-X strengths (see Stefano's talk).
- The decision was taken to separate optics from bumps (separation and crossing).
- Some improvements are under study for the various bumps:
 - IR2/8: the bumps are closed between Q5 (L/R). This decouples the injection conditions from the bump settings.
 - All IRs: the MCBX strength is being reviewed in order to take into account the limitations observed during Hardware Commissioning (350 A instead of 550 A).

The case of higher energies - I

- •A set of 5 TeV beam parameters was CERN already worked out in 2008.
- •Main assumptions:
 - Only "pilot physics" (i.e., up to 156 bunches and no crossing angle) would have been performed at 5 TeV (the rest at 7 TeV).
 - The missing TCTVs in IR8 imposed a limitation on beta* to 6 m (minimum).
 - A rather large safety margin on aperture was considered (n1 about 14 was assumed).
 - Luminosity could reach 5×10³¹ cm⁻² s⁻¹ (IP1/5).


Delsolaro, J. Wenninger, T. Wijnands, F. Zimmermann

The case of higher energies - II

- •Performance estimates might be revised taking into account:
 - Target n1 for intermediate setting: about 11.5
 - Maximum intensity: about 2×10¹³
 - Add crossing angle scenarios
 - Assume similar parameter evolution strategy as for 3.5 TeV case
 - NB: the situation with IBS will be much better than at 3.5 TeV.

Summary

- Taking into account:
 - Experiments desiderata
 - MP constraints
 - Performance considerations
 - Beam dynamics considerations
- Detailed beam parameters tables for 3.5 TeV have been compiled and will be published in a note to be circulated soon for approval.

R. Alemany Fernandez, G. Arduini, R. Assmann, R. Bailey, F. Bordry, O. Brüning, H. Burkhardt, P. Collier, S. Fartoukh, M. Ferro-Luzzi, M. Giovannozzi, B. Goddard, W. Herr, J. Jowett, V. Kain, M. Lamont, D. Macina, A. MacPherson, S. Myers, L. Ponce, S. Redaelli, R. Schmidt, E. Shaposhnikova, W. Venturini Delsolaro, J. Wenninger, F. Zimmermann.

M. Giovannozzi - LHC E

2010