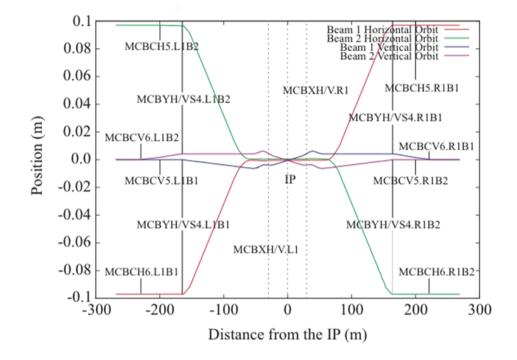


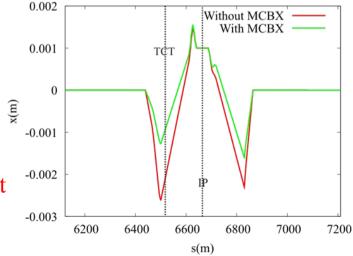
Beam Commissioning Workshop, 19th January 2010



Luminosity Optimization

S. White, H. Burkhardt

Example of an IP bump with and without MCBX:

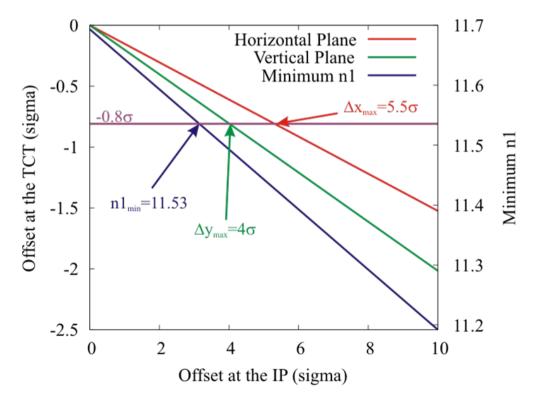

- \Rightarrow Creates a large offset in the TCT region.
- \Rightarrow This offset can be reduced by using MCBX.
- \Rightarrow MCBC and MCBY bumps are not suited for large corrections.
- They should only be used for fine tuning.
- \Rightarrow A large transverse offset of the IP should be corrected by different means (global correction).

MCBX in triplet - important for crossing angle and aperture at injection. Act on both beams and planes at the same time.

MCBC and MCBY only for one beam allow to drive the beams independently.

 \Rightarrow A bump including MCBX magnets will either separate or bring the beams together.

 \Rightarrow An offset of the IP can only be corrected with MCBC and MCBY.

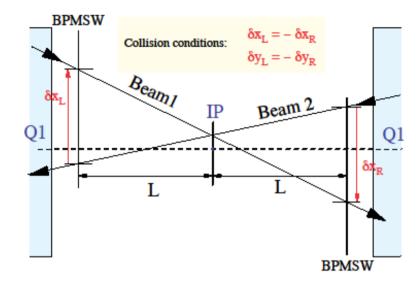


• An orbit offset at the TCT can comprise the collimators efficiency to protect the triplets. In order to correctly shadow the triplets the two following conditions should be fulfilled:

$$\left|\Delta x_{TCT}[\sigma]\right| < n\sigma_{QX} - n\sigma_{TCT}$$
, $nl_{min} > 10.5$

Worst case scenario: $\beta^* = 2 \text{ m}$ at IP5. For a half gap of 12.8σ at the TCT: $\Delta x_{max} \sim 1.2 \sigma$ with separation bump on and $\sim 1.8 \sigma$ with separation off. 1σ for collimators operation $\rightarrow 0.8 \sigma$ is left for optimization.

⇒ There should be enough space for optimization.
Solutions to be discussed for wider scans.
⇒ Increasing β* would increase the allowed scan range, but requires larger bumps.
⇒ These bumps should be tested with safe beam in order to avoid any unpredicted limitations.
⇒ Set limits according to simulations and measurements in the steering software.
⇒ If the allowed scan range is not sufficient this can be overcome by moving the two beams.


IP5 : margin of at least 4σ in vertical and 5.5σ in horizontal. Numbers are similar or better for other IPs.

• Residual separation before corrections. Large offsets were observed in some cases.

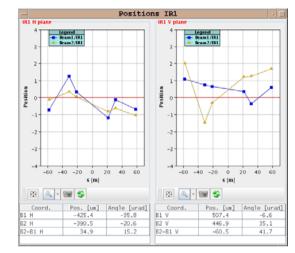
	Horizontal [mm]	Vertical [mm]
IP1	1.15	1.34
IP2	0.5	1.2
IP5	2.35	0.85
IP8	0.3	0.75

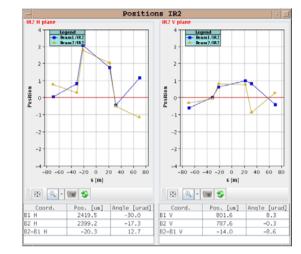
 \Rightarrow Correcting the offsets to align beams based on BPM measurements with local closed orbit bumps was sufficient to establish collisions at the four IPs.

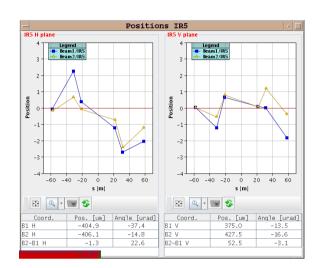
 \Rightarrow This might not be the case for higher energies/smaller beams \rightarrow at 3.5TeV. Van Der Meer scans could be necessary to find the beams.

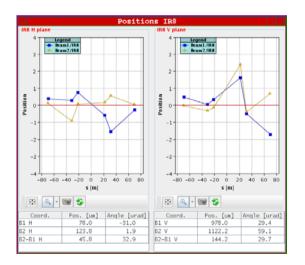
Special case of IP1 and IP5:

Button pick-ups with higher resolution were installed in IP5 and IP1 which directly measure the separation in Q1.


 \Rightarrow Not used in 2009 (only BPMSW) \rightarrow we could possibly reach a better alignment using these.


 \Rightarrow Implement a display in the software.




Status after Corrections

 \Rightarrow (Large) IP transverse offset remaining. Difficult to correct using closed orbit bumps because of aperture limitations.

 \Rightarrow Largest measured crossing angle ~40 murad. Luminosity reduction negligible.

 \Rightarrow IP2/IP8 smaller offsets : MCBX magnets were not used.

 \Rightarrow IP5 some magnets were not commissioned: injection separation bumps magnets were used as a temporary solution.

 \Rightarrow The actual settings are not optimized in terms of IP position and aperture.

 \Rightarrow Re-optimize all IPs starting from a "cleaner" situation and reset collimators afterwards.

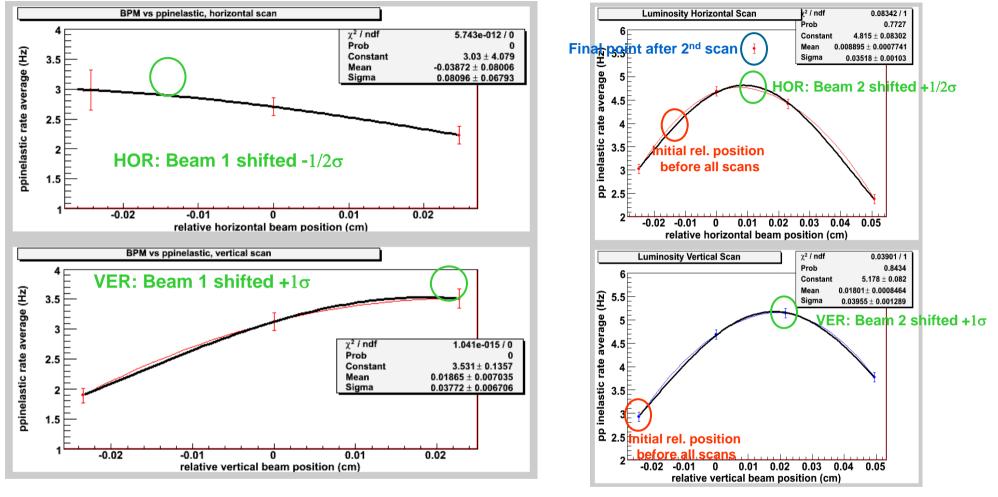
Principle

$$L_0 = \frac{N_1 N_2 n_b f}{4\pi \sigma_x \sigma_y} \text{ and } \frac{L}{L_0} = \exp \left[-\left(\frac{\delta x}{2\sigma_x}\right)^2 - \left(\frac{\delta y}{2\sigma_y}\right)^2 \right]$$

Luminosity and evolution as a function of the separation for equal Gaussian beams.

 \Rightarrow Transverse separation scans allow to find an optimum and give a measurement of the beam sizes at the IP.

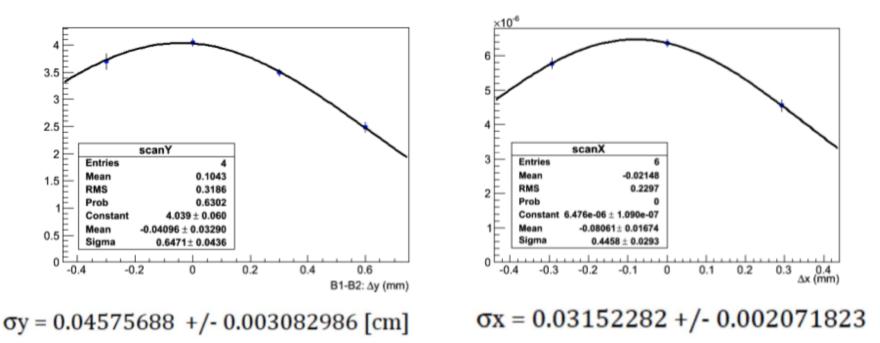
Run '09


- Mini-scans were performed in all IPs during STABLE BEAMS.
- All scans done manually with 3 points for a range of +/- 1 $\sigma.$
- \sim 40 minutes per IP due to the very low rates.

• The software interlock system limits the changes in strength in the orbit correctors.

- \Rightarrow Default settings were too tight \rightarrow had to be manually released to allow for scans of +/- 1 σ .
- \Rightarrow Could go up to +/- 2σ by moving the two beams.

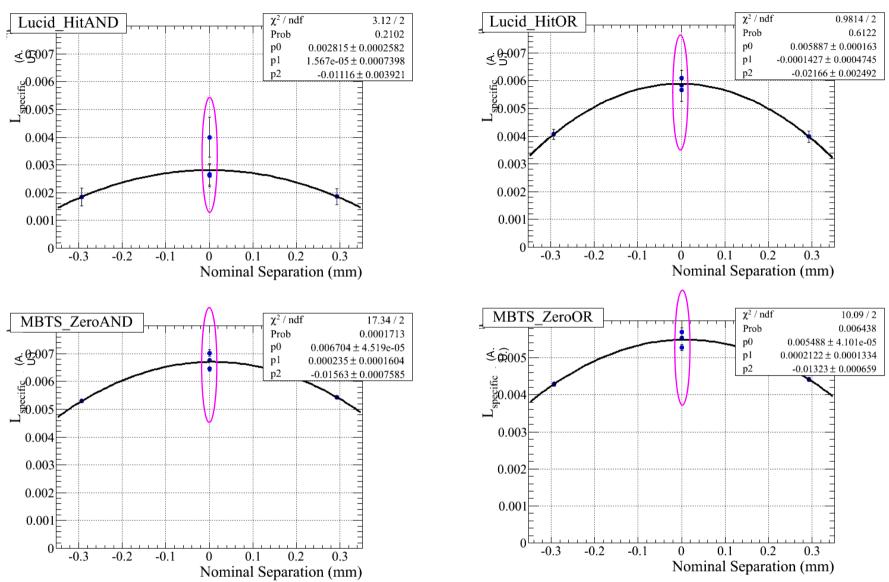
Courtesy of R. Jacobsson


• Measurements done in LHCb. Because of limited scan range several iterations were necessary to find the peak and reach the optimum settings. Gain of $\sim 40\%$ overall.

HF: X Scan

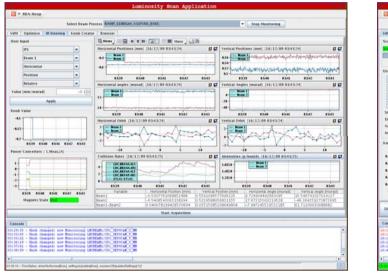
BSC: Y scan

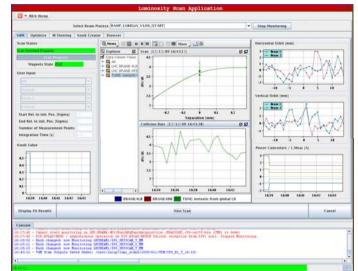
Both HF and BSC were used during the scan
The 3 point scans were found to be extremely valuable and improved the accuracy on the CMS luminosity


• Measurements done in CMS. Because of limited scan range several iterations were necessary to find the peak and reach the optimum settings. Gain of a factor ~2 overall.

Courtesy of T. Camporesi

First Results (ATLAS)


Courtesy of W. Kozanecki


• Measurements done in ATLAS only one set of scans was performed that shown no clear evidence for misalignments. Results were similar for ALICE.

• The same software was used for IR steering and to perform the mini-scans.

• Screen shots of the panels used for IR steering and luminosity scans. Here is an example of a scan performed in LHCb.

- The data exchange with the experiments was done via DIP and was rather successful.
- Fully automated scans routine are implemented and were tested during the dry runs.
- Single beam knobs generated with online model for all IPs/beams/planes. Template script available: can easily be generated for any optics.

To be implemented:

- \Rightarrow Database access (work in progress will be ready for start-up).
- \Rightarrow Ability to drive both beams at once (implement knobs and script for online model).
- \Rightarrow Improved online analysis tools.

• Duration of a scan:

 \Rightarrow Very low rates \rightarrow step trough the different separations manually in order to allow the experiments to collect enough statistics : several minutes per point for a total duration of ~20 minutes per plane.

 \Rightarrow Move on to a fully automated procedure.

 \Rightarrow Once we have higher rates the limitation will come from the magnet ramping rates.

• Online analysis:

 \Rightarrow No detailed analysis provided online \rightarrow had to wait for the experiments feedback.

 \Rightarrow Improve online analysis tools \rightarrow the operator should be able to perform a scan and re-align the beams without feedback from the experiments.

• Scan range:

 \Rightarrow Limited by the software interlock system. Proved to be a real limitation when the peak was out of reach. CMS and LHCb needed several iterations before the optimum could be found.

 \Rightarrow Allow for +/- 2σ scan range by default.

 \Rightarrow If necessary scan with both beams to minimize offset at the TCT (will also optimize ramping time).

 \Rightarrow Avoid using MCBX (larger hysteresis).

- The Van Der Meer scan method can also be used to determine the absolute luminosity by measuring the beam sizes at the IP. All experiments requested an absolute luminosity calibration.
- Calibration scans have different requirements in order to reduce the systematics:
- \Rightarrow Specific measurement \rightarrow done on request.
- \Rightarrow Detailed scan : more points to reduce fit errors and wider range to measure full profile. +/- 5 σ should be sufficient (learn with experience).
- \Rightarrow Move only one beam.
- \Rightarrow Bunch-by-bunch acquisition and analysis.
- \Rightarrow No crossing angle and moderate intensity (5e10 p/bunch).
- \Rightarrow Can only be done once we have higher statistics and stable optics/beam conditions.
- \Rightarrow Once statistic are no longer a limitation a scan is expected to last a few minutes.
- Proposal for the upcoming run:
- \Rightarrow Beam parameters are not too far from what is required for the calibration scans \rightarrow use the end of fills. \Rightarrow A calibration of the length scale using the beam spot measurements from the experiments could further reduce the uncertainty on the position \rightarrow dedicated scans with longer steps.
- \Rightarrow The procedure and tools are the same as for optimization scans (tested and ready).

• IR Steering:

- \Rightarrow Test bumps for aperture limitations.
- \Rightarrow Generate MCBX knobs for all IPs in case large corrections are necessary.
- \Rightarrow Re-align all IPs optimizing aperture and IP transverse position.

• Machine Protection:

 \Rightarrow Could become a limitation for squeezed optics \rightarrow to be studied in details together with the collimation team.

• Luminosity Optimization:

 \Rightarrow Luminosity optimization using the Van Der Meer method was successfully performed in all IPs.

- \Rightarrow The software and data exchange procedure are operational.
- \Rightarrow Move on to a fully automated procedure to allow for optimization as a part of routine operation.

• Luminosity Calibration:

- \Rightarrow Done on request by the experiments.
- \Rightarrow Optimum beam parameters to be determined (learn with experience).