LHC Injection and Dump Protection

W. Bartmann on behalf of the ABT team

LHC Beam Commissioning Workshop Evian, 19-20 Jan 2010

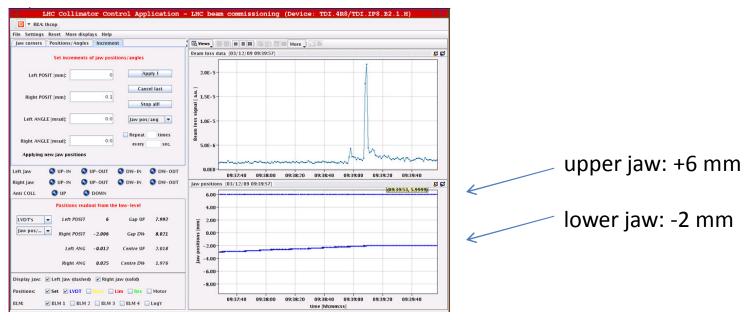
Commissioning Plan: Injection Protection

- Calibration of BLMs
- Centering/beam size of TCDIs and setting to 4.5 σ
- Check phase space coverage
- Check local MSI protection
- TDI/TCLI centering/beam size and setting to \sim 7 σ
- TDI/TCLI check against MKI failure

TCDI set-up

transfer line collimation

- Centering OK for TI2 and TI8 TCDIs
- Beam size: measured only for TCDIs upstream the TED, i.e. 2/6 per TL

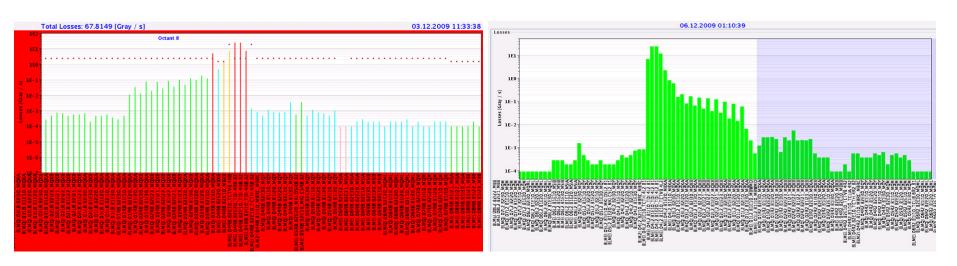

Problems:

- normalization to intensity difficult because of poor BCT resolution in TL
- saturation of BLMs with fastest integration time scale
- crosstalk between BLMs
- Set TCDIs to 4.5 σ : DONE for all TCDIs, but theoretical σ taken
- Check phase space coverage: NOT done
- Check local MSI protection: NOT done

TDI and TCL set-up (I)

vertical passive injection protection system

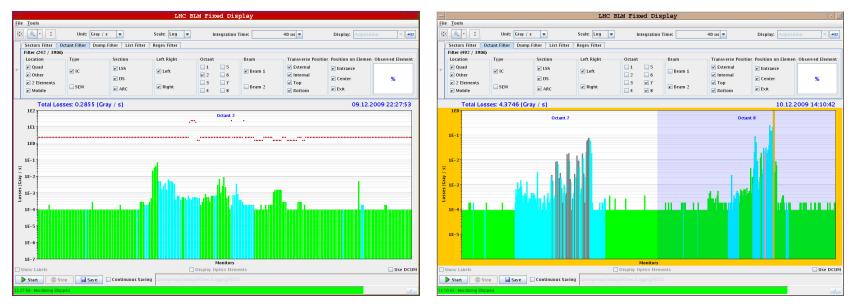
- Set-up no major problem:
 - Beam edge defined at 5.7 σ by collimation system
 - few mm jaw asymmetry to understand for B2, beam well centered on adjacent BTVs
 - TDI already protected LHC from overinjection or missing injection kick.
 - Beam size at TDI NOT measured



TDI and TCL set-up (II)

 Losses and scraping studied, also with Beam Condition Monitors from LHCb and ALICE

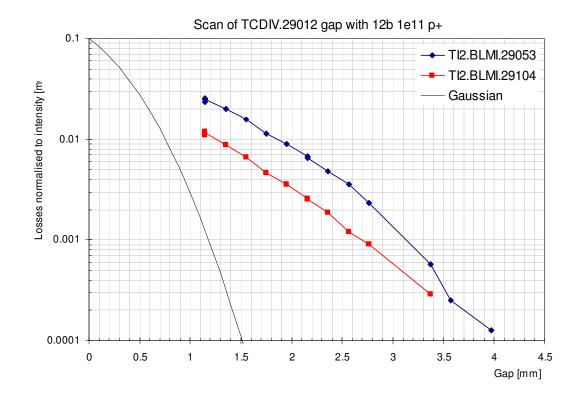
Problem:


 overinjection- now works for B1 but not B2 (losses on MQXA (Q3) R8 which triggers BLMs)

Injection of 1 pilot bunch with TCDIs..

... at nominal 4.5 σ settings with losses from tails (no SPS scraper):

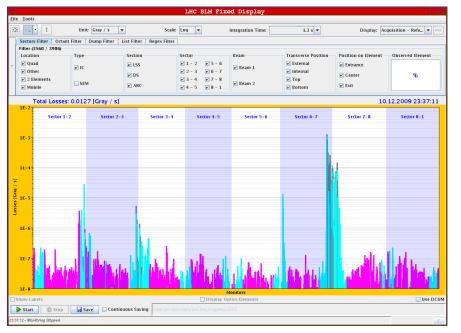
Beam 1 Beam 2

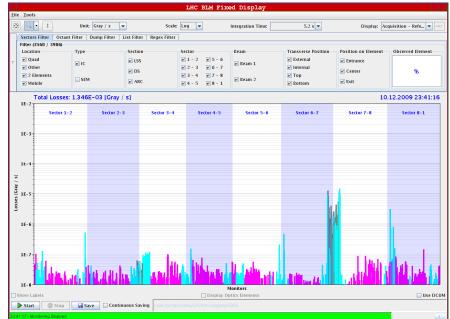


Already close to BLM interlock limit for 40 µs integration time!

Tail Scan with TCDIs

- Tail Scan in TI2
- Intensity: 1.2e11
- Jaws set around derived beam centre
- Jaw opening increased in steps
- Very significant exponential beam tails...


Scraping necessary?!?

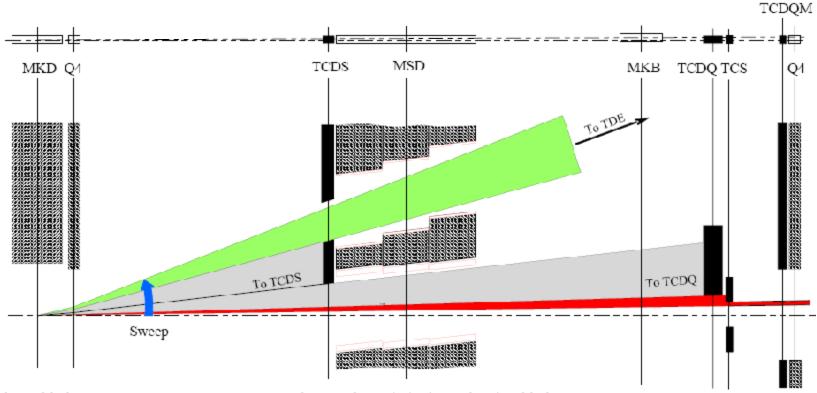


Injection with higher intensity

- 2e10 protons, with SPS scraping, 6 σ horizontal and 4.5 σ vertical collimator settings
 - very clean for B2
 - → B1 has larger losses

Beam 1 Beam 2

Commissioning Plan: Dump Protection

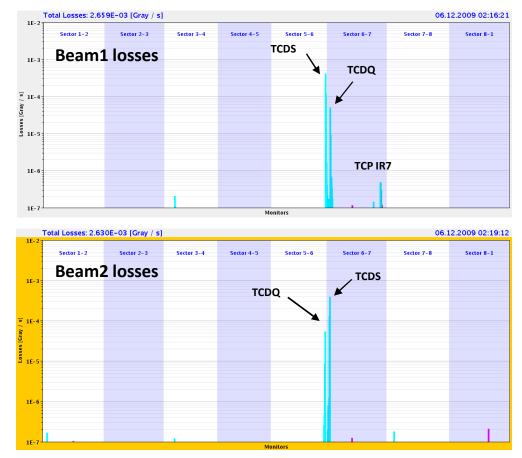

- Correct orbit in point 6
- TCDQ check SW interlock on beam position wrt TCDQ position
- Set up TCDQ/TCS jaws
- Check of TCDQ protection
- Calibration of beam loss signal and protons lost at TCDQ
- Aperture in P6

TCDQ/TCSG(I)

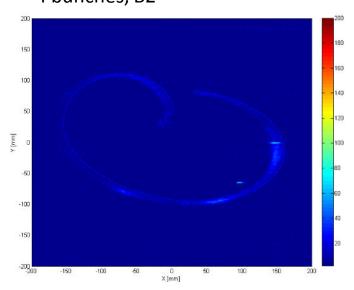
protects Q4 and downstream elements

...in case of asynchronous beam dump or asynch. firing of MKD kickers where part of beam is not absorbed by TCDS

- TCDS (fixed) 6 m long diluter protects extraction septum
- TCDQ/TCS (mobile) 7 m long diluter kept at about 7-8 σ from the beam, at all times



TCDQ/TCSG set-up (II)


- Centering of TCSG and TCDQ:
 - DONE
 - Problems:
 - movement sense inversion for B2 → solved (Mechanical inversion in tank)
 - setting resolution of 0.1 mm, but change of 0.11 mm in setting was necessary?
 - position reading problem → solved by mechanical fix to reduce the friction of the spring on LVDT
 - change to potentiometer to avoid transducer problems → being considered
- Beam size and jaw tilts: NOT measured
- Set to nominal protect settings: DONE (theor. σ retraction)
- Relative setting of TCDQ to TCSG: DONE

TCDQ/TCSG set-up (III)

- Check of TCDQ protection (dump of debunched beam):
 - Losses concentrated on dump protection devices, with 0.1% on collimators

Asynchronous dump tests: 4 bunches, B2

Sweep shape on BTVDD as expected

How far did we get...

Injection Protection

- Calibration of BLMs
- Centering/beam size of TCDIs
- Set TCDIs to 4.5 σ
- Check phase space coverage
- Check local MSI protection
- TDI/TCLI centering/beam size with circulating beam
- Set TDI/TCLI to \sim 7 σ
- TDI/TCLI check against MKI failure

Dump Protection

- Correct orbit in point 6
- TCDQ check SW interlock on beam position wrt TCDQ position
- Set up TCDQ/TCS jaws
- Check of TCDQ protection
- Calibration of beam loss signal and protons lost at TCDQ
- Aperture in P6

Problem Summary

TCDI set up:

- losses in the ring already close to BLM interlock limit for pilot bunch...scraping in the SPS
- Ratio of one pilot bunch to one nominal SPS batch: 6.4e3

TCDIs at	BLM: threshold/losses B1/B2		
	5e9 (B1/B2)	1.6e10	Nominal
4.5 σ hor/vert	10/20		1.10-3/2.10-3
6.0 σ hor / 4.5 σ vert	30/60		3.10-3/6.10-3
6.0σ hor / 4.5σ vert + SPS scraping		10 ³ /10 ⁵	10 -1/10

- BLM saturation and dump thresholds for fastest integration time scale general issue for fast loss
- BLM crosstalk while set-up

Problem Summary (II)

- TDI asymmetry
 - 2mm offset in P8, to be understood, tank opening required
- TCDQ
 - reading problem → fix in shutdown
 - 7 mm misaligned for B1, being checked by experts
- Overinjection B2: losses at MQXA (P8)
 - to be solved...

3.5 TeV? Higher intensity?

- NOT ready
- Injection protection needs to be fully operational for maximum intensity of 1e12 per injection
- Needs adequate setting-up time
- TCDQ system should be tested for different β* squeeze steps
- TCDQ system needs to be operational for stable beam

2010 Strategy

Refine procedure in view of what we learnt

Need to solve the issues listed

Get adequate commissioning time