Separation, crossing, β^* , performance

from first experience: what can we do in 2010?

(proposals for discussion)

W. Herr

Objectives for LHC running in (2009) 2010

- Minimum risk operation
- Deliver luminosity to experiments
- Understand limitations and behaviour of machine and beams
- Establish/improve procedures for operation and optimization

Question:

What is the worst thing for the (luminosity) performance of a hadron collider?

What has changed since Chamonix 2009?

- First target energy 3.5 TeV (5 TeV)
- We assume intermediate collimator settings
- We had first experience with:
 - > Colliding beams
 - > "multi-bunch" operation
 - > Established crossing and separation schemes
 - > Initial squeeze
 - > Experimental magnets

Crossing and separation scheme

- Crossing and separation beam 1 (injection settings)
- Not corrected, required adjustment small

Crossing and separation scheme

- Crossing and separation beam 2 (injection settings)
- Not corrected, required adjustment small

Separation bump IP8

- > Well closed and follows expectations
- Also for other bumps and other IPs

Generation of crossing and separation schemes

- Generation of knobs with online model
- Efficient and fully appropriate
- Possible improvements .. ?
 - Maybe some templates for alternative schemes
 - > Should known imperfections/limitations be part of the underlying model?

Crossing and separation

- **I** Knobs available for all IPs (in mm and μrad)
 - > Closure already good without correction, not optimized
 - For closure: orbit correction procedure sufficient
 - > Should have "standard" settings available
- For luminosity knobs: see S. White presentation
- → Suggestion: tuning knobs for single beams

(Interlude ...)

- Regularly problems with MCBX (in triplet)
- Used for crossing and separation scheme!
 - \triangleright Vital only for small β^* and high energy
 - ➤ In case of severe problems or for operational efficiency → make bumps without MCBX
 - ➤ Alternatively: use another one, there are three of them
 - On-line model can do that for you

Experimental magnets commissioning and operation

- Solenoids (IP1, IP5, IP2) and dipoles (IP2, IP8)
 - Need corrections: orbit closure and coupling (H.Burkhardt)
- Closure of bumps:
 - > Done with standard orbit tools
 - No active elements inside, corrections should be static

Experimental magnets commissioning and operation

- Solenoids coupling correction:
 - > Important: CMS at injection energy
 - > ALICE and ATLAS small effects, probably in noise of coupling measurement
 - Compensation is global, i.e. sensitive to imperfections, optical errors
 - > Computed correction works well, empirical fine tuning necessary (and sufficient)
 - Probably separate corrections needed for the two beams

Experimental magnets commissioning and operation

- For operation of experimental magnets:
 - Careful) setting up of the corrections, should be part of the settings
 - Minor adjustments may be necessary over time, otherwise should be o.k., once set up
 - > Preferred scenario: keep them at full field all the time with all corrections, if possible*)
- *) not possible for LHCb spectrometer with unhealthy polarity (+) and crossing angle: energy ramp required (see Chamonix 2006)

"Multi-bunch" operation in 2009

- Limited number of bunches and only single bunch injection
- Demonstrated:
 - > Flexible injection process
 - > Single bunch diagnostics
- In 2009: used 2x2, 4x4, 16x16 bunches, no problems encountered (but always single bunches transferred)

"Multi-bunch" operation in 2009

- Special: equal number of collisions in all IPs (unequal filling schemes), becomes difficult (rather: inefficient) for large number of bunches:
 - For 4x4 only 2 collisions maximum per IP
 - For 16x16 only 8 collisions maximum per IP
 - In general: get only (maximum) n/2 collisions for n bunches per beam
- For 43 or 156: can optimize number of collisions in IP1/IP5 at the expense of IP2/IP8 (e.g.: 43-4-43-19)
- For injection: multi bunches from SPS to LHC

"High luminosity" operation in 2010

- lacksquare "High luminosity": $\mathcal{L}~\geq 10~^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- Needs:
 - > High bunch intensities
 - > Small beam size, i.e. small β^*
 - Larger number of bunches
 - > Up to 156 bunches without, later with crossing angle
 - Adjust relative luminosities in IP1/IP5 and IP2, IP8
- $lue{}$ Which eta^* is possible ?
 - Dictated by machine protection requirements

Minimum n1 versus β^* - without crossing angle

Constraints - no crossing angle

- \blacksquare Respect n1 larger than 10.5
- lacksquare Respect maximum intensity $\mathbf{I}_{max} \; \mathbf{5} \cdot \mathbf{10}^{13}$ per beam
- Minimum $\beta^* \approx 2$ m is comfortable, slightly lower not excluded
- Maximum 156 bunches, all collisions in IP1 and IP5, IP2 and IP8 adjusted (suggestion: 156 12 156 68)
- Numbers for luminosity therefore approximate

Going to larger number of bunches

- Probably start with 4x4, 16x16 etc. to increase intensity
- From 4x4 to 43x43 (156x156): single bunches to multiple bunches injection
- From 156x156 to more: injection of multiple trains

First parameter set - no crossing angle

number of	\mathbf{N}_b	β* (m)	angle	$\mathcal{L}_{peak}^{IP1,5}$	$\% \ \mathbf{I}_{max}$
bunches	p/bunch)		$(\mu {f rad})$	$({ m cm}^{-2}{ m s}^{-1})$	stored
43	$3 10^{10}$	4	-	8.6 10 ²⁹	2.6
43	$5 10^{10}$	4	-	2.4 10^{30}	4.3
43	$5 10^{10}$	2	-	4.8 10 ³⁰	4.3
156	$5 10^{10}$	2	-	1.7 10 ³¹	16
156	$7 10^{10}$	2	-	$3.4 \ 10^{31}$	22
156	$10 \ 10^{10}$	2	-	6.9 10 ³¹	31

Conclusions - no crossing angle

- Always well below maximum intensity limit
- \blacksquare To get close to a luminosity $10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - Close to nominal bunch intensity
 - > But well away from total intensity limit
 - For lower energies: incentive to go to crossing angle quickly (i.e. from equidistant bunches to <u>trains</u>)
 - For the proposed parameters: luminosity loss very small ($\leq 3\%$)
- Do not waste your time optimizing this configuration (except correction of linear machine, β -beating!)

Operation with many bunches (≥ 156)

- This means going from equidistant bunches to trains
- Number of long range interactions increases with number of bunches per train and <u>not</u> the total number of bunches in the beam
- Adding trains does not change the beam-beam effects
- > Probably start with very few trains (see later)

Towards larger stored energy

- Basically two options:
 - Many (all) bunches and in steps increase intensity per bunch
 - Large (maximum) intensity per bunch and in steps increase number of bunches (i.e. trains)
- Consequences for:
 - **Beam-beam effects**
 - Luminosity control in experiments
 - Operation

Towards larger stored energy

- Beam-beam effects:
 - Additional bunches behave as bunches already in the machine (for second option)
- Luminosity control
 - More flexible to share between experiments
- Operation
 - Changing filling pattern proved to be very easy

Limits with crossing angle?

- With crossing angle:
 - $\beta^* = 3$ m is comfortable, $\beta^* = 2$ m near limit
 - Crossing angle close to nominal, small long range effects, but get operational experience
 - > Select simple filling schemes (50 ns spacing)
- How large is the crossing angle?

β^* and crossing angle in 2010

Total crossing angle required for 3.5 TeV (for 'sufficient' separation)

Operation with crossing angle

- What is needed:
 - Generate squeeze with crossing angle (down to 1 m, just in case)
 - Closure during squeeze should be sufficient
 - Good correction of β -beating
 - > Good correction of orbit in interaction region
 - Luminosity scan knobs for different β^* needed
 - Angle should be large enough. For proposed β^* and limited intensity: can keep it constant during squeeze

Filling schemes

- "Simple" filling schemes:
 - > 50 ns spacing (no 100 or 150 ns spacing)
 - > Standard number of trains (2, 3, 4) in the SPS
 - Must respect the intensity limit, i.e. total number of particles less than 5 10^{13}
 - Number of bunches given all collide in IP1/5
 - Number of special bunches for IP2: 1 to 4 with large spacing are possible (or a train, 50 ns spacing)

Parameter set with crossing angle

number of	\mathbf{N}_b	eta^*	half angle	$\mathcal{L}_{peak}^{IP1,5}$	$\%$ \mathbf{I}_{max}
bunches	p/bunch)	(m)	$(\mu {f rad})$	$(\mathbf{cm}^{-2}\mathbf{s}^{-1})$	stored
156 (-)	$10 10^{10}$	2	-	6.9 10 ³¹	31
$144 (4)^{\ddagger}$	$7 10^{10}$	3	± 140	2.0 10^{31}	20
$288 \ (8)^{\ddagger}$	$7 10^{10}$	3	± 140	4.1 10^{31}	40
$432 \ (12)^{\ddagger}$	$7 10^{10}$	3	± 140	6.2 10^{31}	60
$720 (20)^{\ddagger}$	$7 10^{10}$	3	± 140	10.2 10 ³¹	100

Example: filling scheme with 720 bunches

Filling scheme for 720 bunches per beam, extra bunches for IP2

Possible strategy

- > Start with few bunches and move up to 156 per beam
- Push bunch intensity towards nominal (i.e. above $7 \cdot 10^{10}$)
- > Start operation with crossing angle
- Replace equidistant bunches by trains
- Add trains until E_{tot} limited or luminosity sufficient (choice of trains to tailor the relative luminosities)
- Do not waste your time to optimize the machine before you hit a limit, and thanks for all the fish