Separation, crossing, β^{*}, performance

from first experience: what can we do in 2010 ?

(proposals for discussion)

W. Herr

Objectives for LHC running in (2009) 2010

- Minimum risk operation

Deliver luminosity to experiments
Understand limitations and behaviour of machine and beams

Establish/improve procedures for operation and optimization

Question:

What is the worst thing for the (luminosity) performance of a hadron collider?

What has changed since Chamonix 2009?

圆 First target energy 3.5 TeV (5 TeV)
[We assume intermediate collimator settings
[We had first experience with:

- Colliding beams
- "multi-bunch" operation
- Established crossing and separation schemes
- Initial squeeze
- Experimental magnets

Crossing and separation scheme

Crossing and separation beam 1 (injection settings)
Not corrected, required adjustment small

Crossing and separation scheme

Crossing and separation beam 2 (injection settings)
Not corrected, required adjustment small

Separation bump IP8

Well closed and follows expectations
Also for other bumps and other IPs

Generation of crossing and separation schemes

Generation of knobs with online model
Efficient and fully appropriate

- Possible improvements .. ?
- Maybe some templates for alternative schemes
- Should known imperfections/limitations be part of the underlying model?

Crossing and separation

Knobs available for all IPs (in mm and $\mu \mathrm{rad}$)

- Closure already good without correction, not optimized
- For closure: orbit correction procedure sufficient
- Should have "standard" settings available

Ror luminosity knobs: see S . White presentation
\rightarrow Suggestion: tuning knobs for single beams

(Interlude ...)

Regularly problems with MCBX (in triplet)
Used for crossing and separation scheme!
γ Vital only for small β^{*} and high energy
\Rightarrow In case of severe problems or for operational efficiency \rightarrow make bumps without MCBX

- Alternatively: use another one, there are three of them
- On-line model can do that for you

Experimental magnets commissioning and operation

Solenoids (IP1, IP5, IP2) and dipoles (IP2, IP8)
\rightarrow Need corrections: orbit closure and coupling (H.Burkhardt)

Closure of bumps:

- Done with standard orbit tools
- No active elements inside, corrections should be static

Experimental magnets commissioning and operation

Solenoids coupling correction:

- Important: CMS at injection energy
- ALICE and ATLAS small effects, probably in noise of coupling measurement
- Compensation is global, i.e. sensitive to imperfections, optical errors
- Computed correction works well, empirical fine tuning necessary (and sufficient)
- Probably separate corrections needed for the two beams

Experimental magnets commissioning and operation

For operation of experimental magnets:

- (Careful) setting up of the corrections, should be part of the settings
- Minor adjustments may be necessary over time, otherwise should be o.k., once set up
- Preferred scenario: keep them at full field all the time with all corrections, if possible*)
${ }^{*)}$ not possible for $\mathrm{LHC} b$ spectrometer with unhealthy polarity $(+)$ and crossing angle: energy ramp required (see Chamonix 2006)

"Multi-bunch" operation in 2009

Limited number of bunches and only single bunch injection

Demonstrated:

- Flexible injection process
- Single bunch diagnostics

國 In 2009: used $2 \times 2,4 \times 4,16 \times 16$ bunches, no problems encountered (but always single bunches transferred)

"Multi-bunch" operation in 2009

Special: equal number of collisions in all IPs (unequal filling schemes), becomes difficult (rather: inefficient) for large number of bunches:

- For 4 x 4 only 2 collisions maximum per IP
- For 16×16 only 8 collisions maximum per IP
- In general: get only (maximum) $n / 2$ collisions for n bunches per beam

國 For 43 or 156: can optimize number of collisions in IP1/IP5 at the expense of IP2/IP8 (e.g.: 43-4-43-19)

回 For injection: multi bunches from SPS to LHC

"High luminosity" operation in 2010

"High luminosity": $\mathcal{L} \geq 10{ }^{32} \mathbf{c m}^{-2} \mathbf{s}^{-1}$
國 Needs:

- High bunch intensities
λ Small beam size, i.e. small β^{*}
- Larger number of bunches
- Up to 156 bunches without, later with crossing angle

Adjust relative luminosities in IP1/IP5 and IP2, IP8
Which β^{*} is possible?
D Dictated by machine protection requirements

Minimum n1 versus β^{*} - without crossing angle

- Minimum $n 1$ versus β^{*} for 3.5 TeV

Constraints - no crossing angle

Respect $n 1$ larger than 10.5
Respect maximum intensity $\mathbf{I}_{\max } 5 \cdot 10^{13}$ per beam
國 Minimum $\beta^{*} \approx 2 \mathrm{~m}$ is comfortable, slightly lower not excluded

Maximum 156 bunches, all collisions in IP1 and IP5, IP2 and IP8 adjusted (suggestion: 156-12-156-68)

- Numbers for luminosity therefore approximate

Going to larger number of bunches

Probably start with $4 \times 4,16 \times 16$ etc. to increase intensity
From 4×4 to 43×43 (156×156): single bunches to multiple bunches injection

- From 156x156 to more: injection of multiple trains

First parameter set - no crossing angle

number of bunches	$\begin{gathered} \mathbf{N}_{b} \\ \mathbf{p} / \text { bunch }) \end{gathered}$	$\beta^{*}(\mathrm{~m})$	angle ($\mu \mathrm{rad}$)	$\begin{gathered} \mathcal{L}_{\text {peak }}^{I P 1,5} \\ \left(\mathbf{c m}^{-2} \mathbf{s}^{-1}\right) \end{gathered}$	$\begin{aligned} & \hline \% \mathbf{I}_{\max } \\ & \text { stored } \end{aligned}$
43	310^{10}	4	-	8.610^{29}	2.6
43	510^{10}	4	-	2.410^{30}	4.3
43	510^{10}	2	-	4.810^{30}	4.3
156	510^{10}	2	-	1.710^{31}	16
156	710^{10}	2	-	3.410^{31}	22
156	1010^{10}	2	-	6.910^{31}	31

Conclusions - no crossing angle

Always well below maximum intensity limit
To get close to a luminosity $10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- Close to nominal bunch intensity
- But well away from total intensity limit
\rightarrow For lower energies: incentive to go to crossing angle quickly (i.e. from equidistant bunches to trains)
\rightarrow For the proposed parameters: luminosity loss very small ($\leq 3 \%$)
[Do not waste your time optimizing this configuration (except correction of linear machine, β-beating !)

Operation with many bunches (≥ 156)

This means going from equidistant bunches to trains
Number of long range interactions increases with number of bunches per train
and not the total number of bunches in the beam

- Adding trains does not change the beam-beam effects
- Probably start with very few trains (see later)

Towards larger stored energy

國 Basically two options:

- Many (all) bunches and in steps increase intensity per bunch
- Large (maximum) intensity per bunch and in steps increase number of bunches (i.e. trains)

國 Consequences for:

- Beam-beam effects
- Luminosity control in experiments
- Operation

Towards larger stored energy

Beam-beam effects:

- Additional bunches behave as bunches already in the machine (for second option)

Luminosity control

- More flexible to share between experiments
- Operation
- Changing filling pattern proved to be very easy

Limits with crossing angle ?

With crossing angle:

- $\beta^{*}=3 \mathrm{~m}$ is comfortable, $\beta^{*}=2 \mathrm{~m}$ near limit
- Crossing angle close to nominal, small long range effects, but get operational experience
- Select simple filling schemes (50 ns spacing)

How large is the crossing angle ?

β^{*} and crossing angle in 2010

Total crossing angle required for 3.5 TeV (for 'sufficient' separation)

Operation with crossing angle

國 What is needed:

- Generate squeeze with crossing angle (down to 1 m , just in case)
- Closure during squeeze should be sufficient
\rangle Good correction of β-beating
- Good correction of orbit in interaction region
λ Luminosity scan knobs for different β^{*} needed
- Angle should be large enough. For proposed β^{*} and limited intensity: can keep it constant during squeeze

Filling schemes

"Simple" filling schemes:
$\rangle 50 \mathrm{~ns}$ spacing (no 100 or 150 ns spacing)
\Rightarrow Standard number of trains $(2,3,4)$ in the SPS

- Must respect the intensity limit, i.e. total number of particles less than $5 \mathbf{1 0}^{13}$
- Number of bunches given all collide in IP1/5
- Number of special bunches for IP2: 1 to 4 with large spacing are possible (or a train, 50 ns spacing)

Parameter set with crossing angle

number of bunches	$\begin{gathered} \mathbf{N}_{b} \\ \mathbf{p} / \text { bunch }) \end{gathered}$	$\begin{aligned} & \beta^{*} \\ & (\mathbf{m}) \end{aligned}$	half angle ($\mu \mathrm{rad}$)	$\begin{gathered} \mathcal{L}_{\text {peak }}^{I P 1,5} \\ \left(\mathbf{c m}^{-2} \mathbf{s}^{-1}\right) \end{gathered}$	$\begin{aligned} & \% \mathbf{I}_{\max } \\ & \text { stored } \end{aligned}$
156 (-)	1010^{10}	2	-	6.910^{31}	31
144 (4) ${ }^{\ddagger}$	$7 \mathbf{1 0}^{10}$	3	± 140	2.010^{31}	20
288 (8) \ddagger	710^{10}	3	± 140	4.110^{31}	40
432 (12) ${ }^{\ddagger}$	710^{10}	3	± 140	6.210^{31}	60
720 (20) ${ }^{\text { }}$	$7 \mathbf{1 0}^{10}$	3	± 140	10.210^{31}	100

LHCb,

ALICE

Example: filling scheme with 720 bunches

Filling scheme for 720 bunches per beam, extra bunches for IP2

Possible strategy

- Start with few bunches and move up to 156 per beam
\Rightarrow Push bunch intensity towards nominal (i.e. above $7 \cdot \mathbf{1 0}^{10}$)
- Start operation with crossing angle
\Rightarrow Replace equidistant bunches by trains
- Add trains until $\mathrm{E}_{t o t}$ limited or luminosity sufficient (choice of trains to tailor the relative luminosities)
- Do not waste your time to optimize the machine before you hit a limit, and thanks for all the fish

