
YAML as an ADL: YADL (?)
The F.A.S.T. analysis tools

Ben Krikler
7th May 2019

Analysis Description
Languages for the LHC:

indico.cern.ch/event/769263/

https://indico.cern.ch/event/769263/

Outline of this
talk

Why YAML?

How do the tools work?

What’s next?

2Ben Krikler

Why focus on YAML?
● An existing markup: many parsers exist
● A superset of JSON

○ Static object description (dicts, lists, numbers, strings)
○ Adds anchors and references: reuse common occurrences

● Easier to read than JSON:
○ Can write without brackets and braces
○ Indentation to imply nesting (c.f. python)

● Naturally declarative: No “control flow” (e.g. no for loops)
● Widely used to describe pipeline configuration:

○ gitlab-CI, travis-CI, Azure CI/CD, Ansible, Kubernetes, etc
○ HEPData: YAML for reproducible Data

3Ben Krikler

How do we use YAML at this point?
Four separate types of YAML file, to answer:

1. What are your datasets?
2. How to process them into tables (histograms and cut-flow efficiencies)?
3. How to convert histograms into fitting inputs?
4. How to visualise outputs?

“Hang on Ben, isn’t that just a set of configuration files?”
Much of this project is building towards a DSL but that’s something of a
secondary consequence of the key goal behind all of this….

4Ben Krikler

Ask not “what does my
code need me to do for it”

but “what do I want my
code to do for me”

5Ben Krikler

The F.A.S.T
tools...

6

FAST
codebase

A minimal-viable product to develop these ideas
● Changing rapidly and often
● Some sizeable changes on the roadmap

Developed largely by myself and a couple of others

But being used in some form for 2 CMS analyses and
students on DUNE, FCC, LUX-ZEPLIN experiments
● Have seen students copy snippets verbatim into

talks to other collaboration members

Code to handle configs and execute all written in
Python
● Use existing tools as much as possible
● My goal: code written by me → 0

7Ben Krikler

Where to find the code

● Docs: fast-carpenter.readthedocs.io/
● All on CERN’s gitlab, likely to move to

github soon
○ https://gitlab.cern.ch/fast-hep/public
○ Main package:

gitlab.cern.ch/fast-hep/public/fast-carpenter

● Demo repository where most examples in
this talk come from:
gitlab.cern.ch/fast-hep/public/fast_cms_pu
blic_tutorial

8Ben Krikler

https://fast-carpenter.readthedocs.io/
https://gitlab.cern.ch/fast-hep/public
https://gitlab.cern.ch/fast-hep/public/fast-carpenter
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial

FAST codebase interplay

9Ben Krikler

1 2

3 4

Changes since IRIS-HEP
presentation (4th March)

Documentation on

readthedocs

Stage to produce a ghast

Import mechanism for

processing description

Optimisation of various

stages behind the scenes

10Ben Krikler

https://indico.cern.ch/event/802182/contributions/3334624/

https://indico.cern.ch/event/802182/contributions/3334624/

How it
works...

11

Anatomy of the processing description

stages:

 - Stage1: StageFromBackend

 - Stage2: module.that.provides.some.Stage

 - IMPORT: "{this_dir}/another_description.yaml"

Stage1:

 keyword: value

 another_keyword: [a, list, of, values]

Stage2:

 arg1: 35

 arg2:

 takes: ["a", "dict"]

 with: 3

 different: keys

12

What type of action to take at each step:
● Stage1 = A built-in stage of fast-carpenter
● Stage2 = A stage imported from a python module
● IMPORT = Import a list of stages and their

descriptions from another YAML file

For each stage named above:
● Provide a dictionary of keyword arguments
● Passed through to stage’s init method

Ben Krikler

Stages section:
What do you want

to do with the data?

(Currently) a sequence of stages and their
descriptions.

Each stage:

● Can be any python importable class
● Should implement three or four key

processing methods
● Fast-carpenter provides several

stages

For example:

1. Define some variables
2. Make a histogram
3. Cut out some events
4. Make another histogram

stages:

 # Just defines new variables

 - BasicVars: fast_carpenter.Define

 # A custom class to form the invariant mass of a

 # two-object system

 - DiMuons: cms_hep_tutorial.DiObjectMass

 # Filled a binned dataframe

 - NumberMuons: fast_carpenter.BinnedDataframe

 # Select events by applying cuts

 - EventSelection: fast_carpenter.CutFlow

 # Fill another binned dataframe

 - DiMuonMass: fast_carpenter.BinnedDataframe

13Ben Krikler

Define Stage:
fast_carpenter.Define

● Combines uproot + numexpr (v2)
○ Presents a dict-like object to numexpr,

containing uproot tree and other new
variables

○ https://gitlab.cern.ch/fast-hep/public/fast-ca
rpenter/blob/master/fast_carpenter/express
ions.py

○ All input variable in expression need same
“jaggedness”

○ In future: numpy-like broadcasting across
jaggedness

● Additional reductions: object-level variables
(jagged arrays) to event-level

● Adds variables into tree using replaced
`itervalues` method

● Can some of this become central
functionality within uproot(-methods) in the
future?

14

BasicVars:

 variables:

- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

This next variable will create a single

number for each event, using a set of inputs

whose length varies for each event

- NIsoMuon:

 formula: IsoMuon_Idx

 reduce: count_nonzero

- HasTwoMuons: NIsoMuon >= 2

 # Capture first muon's Pt, padded

 # with NaNs if NMuon < 1

- Muon_lead_Pt: {reduce: 0, formula: Muon_Pt}

 # Capture second muon's Pt, padded

 # with NaNs if NMuon < 2

- Muon_sublead_Pt: {reduce: 1, formula: Muon_Pt}

Ben Krikler

https://gitlab.cern.ch/fast-hep/public/fast-carpenter/blob/master/fast_carpenter/expressions.py
https://gitlab.cern.ch/fast-hep/public/fast-carpenter/blob/master/fast_carpenter/expressions.py
https://gitlab.cern.ch/fast-hep/public/fast-carpenter/blob/master/fast_carpenter/expressions.py

Select events
fast_carpenter.CutFlow

Masks events from subsequent stages

Produces a cut-flow summary with:
● Raw and weighted yields
● Inclusive and exclusive yields to each

cut

Selection is specified as a nested dictionary
of All and Any and a list of cuts
● Inspired by Tai Sakuma’s approach in

AlphaTwirl

Individual cuts use same scheme as variable
definition

15

EventSelection:

 weights: {weighted: EventWeight}

 selection:

All:

 - NIsoMuon >= 2

 - triggerIsoMu24 == 1

 - {reduce: 0, formula: Muon_Pt > 25}

DiMu_controlRegion:

 weights: {nominal: weight}

 selection:

 All:

 - {reduce: 0, formula: Muon_pt > 30}

 - leadJet_pt > 100

 - All:

 - DiMuon_mass > 60

 - DiMuon_mass < 120

 - Any:

 - nCleanedJet == 1

 - DiJet_mass < 500

 - DiJet_deta < 2

Ben Krikler

16

Resulting cut-flow
outputs from
EventSelection config on
last slide

Select events
fast_carpenter.
CutFlow

Ben Krikler

Fill a histogram
fast_carpenter.BinnedDataFrame

fast_carpenter.BuildAghast

● Binning scheme:
○ Assume variable already discrete

(eg. NumberMuons)

○ Equal-width bins over a range

(eg. DiMuonMass)

○ List of bin edges

○ Special: bin by dataset name

● Weighting schemes:
○ None

○ Single weight variable

○ List of weight variables

○ Mapping of names to input variable

● Output written to disk:

○ Pandas to produce a dataframe (csv)

○ Also to a Ghast for future tooling
17

NumberMuons:

 dataset_col: true

 binning:

- {in: NMuon, out: nMuons}

- {in: NIsoMuon, out: nIsoMuons}

 weights: [EventWeight, EventWeight_NLO_up]

DiMuonMass:

 dataset_col: true

 binning:

- in: DiMuon_Mass

 out: dimu_mass

 bins: {low: 60, high: 120, nbins: 60}

 weights: {weighted: EventWeight}

Ben Krikler

Fill a
histogram:
Resulting CSV
from
DiMuonMass

18

Showing only first three
rows for each dataset
(using groupby
operation)

Ben Krikler

Turning outputs into
plots: fast-plotter
● Philosophy of: easy to produce basic

plots, tools to support final
publication-quality:
○ Command-line tool with good

defaults and simple configuration

○ Written in lots of small functions that

can help a user in a dedicated script /

notebook

● Plot on the right with:
fast_plotter -y log \
-c plot_config.yml \
-o tbl_*.csv

19

Plot of DiMuonMass binned dataframe from last slide

Ben Krikler

User-defined
stages

● This is a growing MVP
● Previous steps not able to capture all analysis

needs (yet), eg:
○ More complex variable definition (e.g. invariant masses)

○ Scale factor look-ups

● But a stage needn’t belong to fast_carpenter
○ Break out of declarative YAML to full, imperative python

● Any importable python class with the correct
interface can be used:
○ __init__ method accepts at least a name and output

directory path

○ An event method

○ Optionally: begin, end, and collector methods

○ Collector used to write to disk if wanted

● Example: fast_cms_public_tutorial/cms_hep_tutorial/__init__.py

20

stages:

 - BasicVars: fast_carpenter.Define

 - DiMuons: cms_hep_tutorial.DiObjectMass

 - Histogram: BinnedDataframe

Ben Krikler

https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/cms_hep_tutorial/__init__.py

Mainly for scaling up to full analysis

● Many input files form a dataset

● Many datasets make up an analysis

Shouldn’t need to produce dataset descriptions too often
● Analyses keep dataset files in repo, easy to review

Command line tool to help you:
● Eg. wild-card on the command line, including xrootd

files (contributed to pyxrootd)

Dataset types can be “data” or “MC”
● Event weights only applied to MC

Can include additional meta-data e.g.:
● Cross-sections

● Number of original events (for processing skimmed

inputs)

● Event tree name
21

import:

 - "{this_dir}/WW.yml"

 - "{this_dir}/WZ.yml"

datasets:

 - eventtype: data

 Files: [input_files/HEPTutorial/files/data.root]

 name: data

 nevents: 469384

 - files: [input_files/HEPTutorial/files/dy.root]

 name: dy

 nevents: 77729

 - files: [input_files/HEPTutorial/files/qcd.root]

 name: qcd

 nevents: 142

defaults:

 eventtype: mc

 nfiles: 1

 tree: events

Describe your datasets:
 fast-curator

Ben Krikler

https://gitlab.cern.ch/fast-hep/public/fast-curator/blob/master/fast_curator/xrootd_glob.py
https://gitlab.cern.ch/fast-hep/public/fast-curator/blob/master/fast_curator/xrootd_glob.py
https://github.com/xrootd/xrootd/pull/854

FAST codebase interplay

22

● fast-flow: Library code only
● fast-curator: Executables to write and validate YAML
● fast-carpenter: Main entry-point. Default backend and stages
● fast-plotter: Executable with good defaults, small functions to assist custom scripts
● fast-datacard: Specific to CMS Higgs Combine inputs at this point

Ben Krikler

Just how
“fast” is this?

Compared to C++ example analysis, single core
● Fast-carpenter: 6 seconds, ~100 lines of

analysis-specific code
● C++ example: 3 seconds, >600 lines of code

Apples-to-apples comparison is tricky

Many places ripe for optimisation:

● Overly-general histogram filling using pandas
● Combining multi-processed jobs’ output
● Caching and optimisation of variable definitions

(a la histbook ?)

23Ben Krikler

Going
forwards...

24

Really using
YAML as an
ADL

YAML descriptions from previous slides specifically tied
to fast-carpenter and friends.

Could this be “standardised” into a full language = YADL

Stage provides the same interface and outputs: its
implementing the YADL standard for such a stage, e.g.:
● Variable definition expressions
● Cut-flows with nested dictionaries

Fast-flow already provides a “backend” mechanism
● Develop further: allow user to select backend
● E.g.: AlphaTwirl (current), Spark, RDataFrame

25Ben Krikler

Roadmap for changes

1. Generalised data-space concept:
○ Not just individual (jagged)-arrays
○ Tables, dataframes, ghasts, etc
○ Remove uproot tree “branch

injection” hacks
2. Improved expressions:

○ Pre-process on top of numexpr
○ Move reductions into expressions
○ Separate package?

3. Flow control model
○ Stages to become more functional
○ Move to PARSL, SAGA-Python
○ Support Spark integration

4. Type system for configurations
○ Via Python 3 type annotations?

5. Collaboration with similar efforts?
○ E.g. using functions from Coffea

26Ben Krikler

● Have introduced the FAST codebase
○ Incorporating uproot, awkward array, numexpr,

aghast
○ Being used on CMS and several other experiments

● YAML-based analysis description
○ Datasets, processing, plotting steps
○ Not too much work to “standardize” this beyond

existing backend

● About twice as slow as equivalent C++ analysis
(single core)
○ But lots of room for optimisation

● Resources
○ Code: gitlab.cern.ch/fast-hep/public/fast-carpenter/
○ Installing: pypi.org/project/fast-carpenter/
○ Docs: fast-carpenter.readthedocs.io/
○ Gitter: gitter.im/FAST-HEP/community

Summary

27Ben Krikler

https://gitlab.cern.ch/fast-hep/public/fast-carpenter/
https://pypi.org/project/fast-carpenter/
https://fast-carpenter.readthedocs.io/
https://gitter.im/FAST-HEP/community

Thank You

28

“Analysis in a CI pipeline”

● To run this:
○ Demo analysis in a pipeline
○ The gitlab-ci config
○ Script tying the commands together

● Feasible for huge datasets unclear, but can happily manage subsets of data for testing

29Ben Krikler

https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/pipelines/734469
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/.gitlab-ci.yml
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/pipeline/Makefile

Fill a
histogram:
Technical
implementation
details

● First load necessary branches into pandas
dataframe

● Then one highly general function to
○ Discretize (i.e. bin) variables if needed (using pandas.cut)

○ Aggregate (groupby) and produce counts, sum of

(multiple) weights, and sum of square of (multiple)

weights

● This covers all cases but not optimal in many
common uses, e.g.:
○ Single variable to bin on

○ Unweighted counts

● Can optimise behind the scenes
○ https://iscinumpy.gitlab.io/post/histogram-speeds-in-py

thon/

○ Config file doesn’t have to change

30Ben Krikler

https://iscinumpy.gitlab.io/post/histogram-speeds-in-python/
https://iscinumpy.gitlab.io/post/histogram-speeds-in-python/

FAST = Faster Analysis
Software Taskforce
● Group of HEP

researchers

● Primarily working for

UK institutes

● Started around May

2017

● Use of 1 to 3-day

“hack-shops” to test

new ideas

● Goals: Try to help

improve HEP analysis

software
a. Simplicity
b. Speed
c. Documentation
d. Automation

31

ht
tp
s:
//w

w
w
.im

db
.c
om

/ti
tle
/tt
02
32
50
0/

No connection to this work, just an
excuse to include an image

Ben Krikler

FAST Hack-shops

● Halfway between hackathon and a workshop
● Small (<10) group of people working together for 1 to 3 days
● People / pairs working on self-defined projects (eg. set up PARSL within fast-carpenter)
● Mainly for trying out new tools, experimenting with new ideas
● 4 hack-shops held throughout last two years, but only within FAST
● Would there be interest to extend this to HSF / IRIS-HEP / scikit-hep more broadly?

32Ben Krikler

A little bit of context

This talk

33Ben Krikler

