Data Analysis

Lecture 2: Distributions, estimators

In this lecture
- Distributions
 - Properties
 - Main distributions
- Point (parameter) estimation
 - Maximum likelihood method
 - Least-squares method

Properties of distributions
- **Probability density function** (PDF) = \(f(x) \)
- **Expectation**
 - Expectation of any random function \(g(x) \): \(E(g) = \int g(x) f(x) dX \)
 - Expectation of \(x \) = mean of the \(f(x) \) = expected value of \(x \) :
 \[
 E(x) = \mu = \bar{x} = \langle x \rangle = \int x f(x) dx
 \]
- **Variance**
 \[
 V(x) = \sigma^2 = E[(x - \mu)^2] = E(x^2) - \mu^2 = \int (x - \mu)^2 f(x) dx
 \]
 - \(\sigma \) is called the standard deviation
- \(E(x) \) is a measure of the location of the distribution
- \(V(x) \) is a measure of the spread of the distribution

Moments
- \(\mu_n = E(x^n) \) is the \(n^{th} \) algebraic moment
- \(V_n = E\{[x^n - E(x)]^n\} \) is the \(n^{th} \) central moment
- \(\mu'_n = E\{|x^n|\} \) is the \(n^{th} \) absolute moment
- \(V'_n = E\{|x^n - E(x)|^n\} \) is the \(n^{th} \) absolute central moment

The coefficient of skewness
A measure of the skewness of the distribution
\[
\gamma_1 = \frac{V_3}{V_2^{3/2}}
\]

The coefficient of kurtosis
A measure of the "peakedness" of the distribution
\[
\gamma_2 = \frac{V_4}{V_2^2} - 3
\]
Covariances and correlations

- Joint PDF for two random variables is\(f(x,y) \).
- The **mean** and the **variance** of \(x \) and \(y \):
 \[
 \mu_x = E(x) = \int xf(x,y)dx \quad \mu_y = E(y) = \int yf(x,y)dx \\
 \sigma_x^2 = E[(x - \mu_x)^2] \quad \sigma_y^2 = E[(y - \mu_y)^2]
 \]
- **Covariance** \(\text{cov}(x,y) = E[(x - \mu_x)(y - \mu_y)] = E(xy) - E(x)E(y) \)
- **Correlation coefficient** \(\text{corr}(x,y) = \rho(x,y) = \frac{\text{cov}(x,y)}{\sigma_x \sigma_y} \)

Covariance/Variance/Error matrix:
\[
V = \begin{bmatrix}
\text{cov}(x,x) & \text{cov}(x,y) \\
\text{cov}(x,y) & \text{cov}(y,y)
\end{bmatrix} =
\begin{bmatrix}
\sigma_x^2 & \rho_{xy} \sigma_x \sigma_y \\
\rho_{xy} \sigma_x \sigma_y & \sigma_y^2
\end{bmatrix}
\]

Binomial distribution

- **Variable** \(r \), positive integer \(\leq N \)
- **Parameters** \(N \), positive integer; \(p \), \(0 \leq p \leq 1 \)
- **Probability function**
 \[P(r;N,p) = \binom{N}{r} p^r (1-p)^{N-r} \]
- **Mean** \(E(r) = Np \)
- **Variance** \(V(r) = Np(1-p) \)
- **Usage example** - \(Z \) decay:
 - \(p = BR(Z \rightarrow ee) = 3\% \)
 - \(P(5;80,0.03) = 6\% \) probability to find exactly 5 \(ee \) events out of 80 \(Z \) decays
- **Comment** \(P(r;N,p) \) is a probability of finding exactly \(r \) successes in \(N \) trials, when probability of success in each single trial is a constant, \(p \)

Multinomial distribution

- **Variable** \(r_i \), \(i = 1, \ldots, k \), positive integers \(\leq N \)
- **Parameters** \(N \), positive integer; \(k \), positive integer \(p_i \geq 0, \ i = 1, \ldots, k \), \(\sum p_i = 1 \)
- **Probability function**
 \[P(r_1,\ldots,r_k;N,p_1,\ldots,p_k) = \frac{N!}{r_1!\cdots r_k!} p_1^{r_1} \cdots p_k^{r_k} \]
- **Mean** \(E(r_i) = Np_i \)
- **Variance** \(V(r_i) = Np_i(1-p_i) \)
- **Usage example** - Histogram containing \(N \) events distributed in \(k \) bins, with \(r_i \) events in the \(i^{th} \) bin
- **Comment** - Multinomial distribution is the generalization of the binomial distribution to the case of more than two possible outcomes of an experiment
 - When \(p_i < 1 \) (many bins) \(V(r_i) \sim Np_i = r_i \)
Poisson distribution

Variable
\(r \), positive integer

Parameters
\(\mu \), positive real number

Probability function
\[
P(r; \mu) = \frac{\mu^r e^{-\mu}}{r!}
\]

Mean
\(E(r) = \mu \)

Variance
\(V(r) = \mu \)

Usage example
Number of events \(r \) collected after integrated luminosity \(\int L dt \). Expected number of events is \(\mu = \sigma \int L dt \). \(\sigma \) is the cross section.

Comments
- \(P(r; \mu) \) expresses the probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event.
- \(\mu \) represents expected number of events in a given time interval.
- Time between two successive events is exponentially distributed.
- Poisson distribution is also called Poissonian.

Normal or Gaussian distribution

Variable
\(x \), positive real number

Parameters
\(\mu \), real number
\(\sigma \), real number

Probability density function
\[
f(x) = N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x - \mu)^2}{2 \sigma^2}}
\]

Mean
\(E(x) = \mu \)

Variance
\(V(x) = \sigma^2 \)

Cumulative distribution
\[
F(x) = \Phi \left(\frac{x - \mu}{\sigma} \right), \quad \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt
\]

Comments
- The most important distribution in statistics.
- The half-width at half-height is 1.176\(\sigma \).
- \(N(0, 1) \) is called standard Normal density.
- Any linear combination of the \(x_i \) is also Normal.

Gaussian – some properties

<table>
<thead>
<tr>
<th>(n)</th>
<th>Area (\pm 1\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.682689492137</td>
</tr>
<tr>
<td>2</td>
<td>0.954499736104</td>
</tr>
<tr>
<td>3</td>
<td>0.997300203937</td>
</tr>
<tr>
<td>4</td>
<td>0.999936657516</td>
</tr>
<tr>
<td>5</td>
<td>0.999999426697</td>
</tr>
</tbody>
</table>
Why is Gauss Normal?

Central limit theorem:
If we have a set of N independent variables x_i, each from a distribution with mean μ_i and variance σ_i^2, then the distribution of the sum $X = \sum x_i$
- a) has a mean $<X> = \Sigma \mu_i$
- b) has a variance $V(X) = \Sigma \sigma_i^2$,
- c) becomes Gaussian as $N \rightarrow \infty$.

Therefore, no matter what the distributions of original variables may have been, their sum will be Gaussian in a large N limit.

Example (adopted from Barlow): "Human heights are well described by a Gaussian distribution, as many other anatomical measurements, as these are due to the combined effects of many genetic and environmental factors."

Multivariate Gaussian

Multivariate Gaussian for the vector $x = (x_1, x_2, \ldots, x_m)$

$$f(x; \mu, V) = \frac{1}{(2\pi)^{m/2} |V|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T V^{-1} (x - \mu) \right]$$

x and μ are column vectors, while x^T and μ^T are row vectors.

$\mu = E(x_i)$

$V = \text{cov}(x_i, x_j)$

Case of two variables ($m = 2$)

$$f(x_{(1)}, x_{(2)}; \mu_{(1)}, \mu_{(2)}, \sigma_{(1)}, \sigma_{(2)}) =$$

$$\frac{1}{2\pi \sigma_{(1)} \sigma_{(2)} \sqrt{1 - r^2}} \times \exp \left[-\frac{1}{2(1 - r^2)} \left(\frac{x_{(1)} - \mu_{(1)}}{\sigma_{(1)}} \right)^2 + \left(\frac{x_{(2)} - \mu_{(2)}}{\sigma_{(2)}} \right)^2 - 2r \left(\frac{x_{(1)} - \mu_{(1)}}{\sigma_{(1)}} \right) \left(\frac{x_{(2)} - \mu_{(2)}}{\sigma_{(2)}} \right) \right]$$

More than two variables

Let’s say that each event measure three quantities A, B and C

We than have three random variables x, y and z

Vector of measurements is now a matrix:

Introducing new notation

$$(x_1, y_1, z_1) \rightarrow (x_{(1)}, x_{(2)}, x_{(3)}) \rightarrow \bar{x} = x$$

$$(\mu_1, \mu_2, \mu_3) \rightarrow (\mu_{(1)}, \mu_{(2)}, \mu_{(3)}) \rightarrow \bar{\mu} = \mu$$

In case of m variables $x = (x_{(1)}, x_{(2)}, \ldots, x_{(m)})$

Please note: this multivariate vector x is a vector of m variables for one event, while in the case of one variable x is a vector of values of one variable for N events

2D Gaussian: iso-probability curves

ϕ is a measure of the correlation (more details later)

Adopted from L. Lista
Chi-square distribution

<table>
<thead>
<tr>
<th>Variable</th>
<th>x, positive real number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>N, positive integer (number of "degrees of freedom")</td>
</tr>
<tr>
<td>Probability function</td>
<td>$f(x) = \left(\frac{X^2}{2} \right)^{N/2} e^{-X/2} / \Gamma(N/2)$</td>
</tr>
<tr>
<td>Mean</td>
<td>$E(x) = N$</td>
</tr>
<tr>
<td>Variance</td>
<td>$V(x) = 2N$</td>
</tr>
<tr>
<td>Usage example</td>
<td>Chi-square test for goodness of fit</td>
</tr>
</tbody>
</table>
| Comments | • If x_i are k independent, normally distributed random variables with mean 0 and variance 1, then the random variable $Q = \sum x_i^2$ is distributed according to the chi-square distribution with k degrees of freedom
• The chi-square distribution is a special case of the gamma distribution. |

Some other distributions

- **Student's t-distribution**
 - Used for hypothesis testing
 - First published in 1908 by W. S. Gosset, while he worked at a Guinness Brewery, under the pseudonym Student

- **Beta distribution**
 - Used in Bayesian statistics

- **Gamma distribution**
 - Probability model for waiting time

- **Cauchy or Lorentz or Breit-Wigner distribution**
 - A solution to the differential equation describing a resonance
 - Energy distribution of a resonance

- **Log-Normal distribution**
 - Used when including systematic errors in the analysis
 - If x is Log-Normally distributed, than $\log(x)$ is Normally distributed

All roads lead to Rome

- **Binomial**
- **Poissonian**

- **Multinomial**

- **Normal**

- **Chi-square**

- $$p \to 0 \quad Np = \mu$$

- $$N \to \infty$$

- $$\mu \to \infty$$
General picture

1. Physical phenomena
 Described by a theory

 \[W_{\text{MC}} - W_{\text{MC}} \]

2. Sampling a reality
 Experiment

3. Data sample
 \[x = (x_1, x_2, \ldots, x_n) \]
 For example:
 \[x = (\text{event}_1, \ldots, \text{event}_n) \]

4. Data analysis

5. Results
 - parameter estimates
 - confidence limits
 - hypothesis tests

Data analysis

- **Physical phenomena**
 - Described by PDFs, depending on \(p \) unknown parameters with true values
 - \(\theta^{p\text{true}} = (\theta_1^{p\text{true}}, \theta_2^{p\text{true}}, \ldots, \theta_p^{p\text{true}}) \)
 - For example:
 - \(\theta^{p\text{true}} = (m_i^{p\text{true}}, \Delta m_i^{p\text{true}}, \sigma_i^{p\text{true}}) \)

- **Experiment**
 - Data sample
 \[x = (x_1, x_2, \ldots, x_n) \]

- **Results**
 - Parameter estimates
 - Confidence limits
 - Hypothesis tests

Physicists and statisticians

Example: histogram fitting

<table>
<thead>
<tr>
<th>Physicists</th>
<th>Statisticians</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determining the “best fit” parameters of a curve</td>
<td>1. Point estimation</td>
</tr>
<tr>
<td>2. Determining the errors on the parameters</td>
<td>2. Confidence interval estimation</td>
</tr>
<tr>
<td>3. Judging the goodness of a fit</td>
<td>3. Goodness-of-fit (Hypothesis) testing</td>
</tr>
</tbody>
</table>

Adapted from [Baker, Cousins, 1984]

Example: mass measurement

Example: mass measurement

Histogram: default representation

```
histo->Draw();
```

Histogram: points with errors

```
histo->Draw("ep");
```

From `$ROOTSYS/tutorials/fit/FittingDemo.C`

From `$ROOTSYS/tutorials/fit/FittingDemo.C`
Example: mass measurements

Therefore we have
- a set of precisely known values \(x = (x_1, \ldots, x_n) \) - histograms bins
- At each \(x_j \)
 - a measured value \(y_j \) - number of events in a given bin
 - a corresponding error on measured value \(\sigma_i \)

What we want is to estimate the values of \(\theta_1^{\text{true}}, \ldots, \theta_m^{\text{true}} \)

This is what we call the parameter ESTIMATOR: \(\hat{\theta}_j \)

Physical phenomena (theory)

Described by a function, depending on \(m \) unknown parameters with true values \(\theta_1^{\text{true}}, \ldots, \theta_m^{\text{true}} \)

Properties of a good estimator

Consistent
- Estimate converges to the true value as amount of data increases
 \(\hat{\theta} \) increases \(\Rightarrow \theta^{\text{true}} \)

Unbiased
- Bias is the difference between expected value of the estimator and the true value of the parameter
 \(b = E(\hat{\theta}) - \theta^{\text{true}} = 0 \)

Efficient
- Cramér-Rao bound for the minimum of the variance of estimator:
 \[
 V(\hat{\theta}) = \frac{1}{E \left(\frac{\partial^2}{\partial \theta^2} \sum \ln f(x; \theta) \right)}
 \]

Robust
- Insensitive to departures from assumptions in the PDF
- Fisher information

Experiment: sampling the reality

Physical phenomena

L+Q
Lorenzian
Quadratic

\[
\text{Lorenzian} = L(x; D, \Gamma, M) = \frac{D \Gamma}{(x^2 - M^2)^2 + 0.55D^2}
\]

\[
\text{Quadratic} = Q(x; A, B, C) = A + Bx + Cx^2
\]

Underlying phenomena depends on 6 unknown parameters:

\[
F(x; D, \Gamma, M, A, B, C) = L(x; D, \Gamma, M) + Q(x; A, B, C) = F(x; \theta)
\]

Data analysis: estimating parameters

From data sample we are looking for the function that describes the measurements the best

The parameters of that function are estimators of unknown parameters

\[
F(x; \hat{D}, \hat{\Gamma}, \hat{M}, \hat{A}, \hat{B}, \hat{C}) = L(x; \hat{D}, \hat{\Gamma}, \hat{M}) + Q(x; \hat{A}, \hat{B}, \hat{C}) = F(x; \hat{\theta})
\]
Statistc

- Be careful! **Statistic** is not statistic!
- Any new random variable (f.g. T), defined as a function of a measured sample \(x \) is called a **Statistic**:
 \[T = T(x_1, \ldots, x_N) \]
- For example, the sample mean
 \[\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \]
 is a statistic!
- A statistic used to estimate a parameter is called an **Estimator**
 - For instance, the **Sample mean** is a statistic and an estimator for the **Population mean**, which is an unknown parameter
 - **Estimator** is a function of the data
 - **Estimate**, a value of estimator, is our "best" guess for the true value of parameter
- Some other example of statistics: sample median, variance, standard deviation, quartiles, percentiles, t-statistic, chi-square statistic, kurtosis, skewness etc.

Estimators in ROOT - display

- **Estimators** display in the statistic box
 - Drawn by default; can be eliminated by \(\text{TH1::SetStats(kFALSE)} \)
 - \(\text{gStyle} \rightarrow \text{SetOptStat(mode)} \) allows to select the type of displayed information
 - mode:
 - \(kTRUE \) (default - 00000111)

<table>
<thead>
<tr>
<th>n</th>
<th>the name of histogram is printed</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>the number of entries</td>
</tr>
<tr>
<td>m</td>
<td>the mean value</td>
</tr>
<tr>
<td>m</td>
<td>the mean and mean error values</td>
</tr>
<tr>
<td>r</td>
<td>the root mean square (RMS)</td>
</tr>
<tr>
<td>r</td>
<td>the RMS and RMS error</td>
</tr>
<tr>
<td>u</td>
<td>the number of underflows</td>
</tr>
<tr>
<td>o</td>
<td>the number of overflows</td>
</tr>
<tr>
<td>i</td>
<td>the integral of bins</td>
</tr>
<tr>
<td>s</td>
<td>the skewness</td>
</tr>
<tr>
<td>s</td>
<td>the skewness and the skewness error</td>
</tr>
<tr>
<td>k</td>
<td>the kurtosis</td>
</tr>
<tr>
<td>k</td>
<td>the kurtosis and the kurtosis error</td>
</tr>
</tbody>
</table>

Estimators in ROOT - values

<table>
<thead>
<tr>
<th>Mean</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{N} \sum_{i=1}^{N} x_i \pm \frac{\text{RMS}}{\sqrt{N}})</td>
<td>(\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \pm \frac{\text{RMS}}{\sqrt{2N}})</td>
</tr>
</tbody>
</table>

- **Total number of events** \(N \) is only in the currently defined range
- From the ROOT Reference Manual
 "Note that the mean value/RMS is computed using the bins in the currently defined range (see \(\text{TAxis::SetRange} \)). By default the range includes all bins from 1 to nbins included, excluding underflows and overflows. To force the underflows and overflows in the computation, one must call the static function \(\text{TH1::StatOverflows(kTRUE)} \) before filling the histogram."

Estimators in ROOT - example

Notice an influence of the tail on the mean value
How to find a good estimator?

The Method of Moments
- Giving consistent and asymptotically unbiased estimators
- But are not as efficient as the maximum likelihood estimates
- Not covered in this lecture

The Maximum Likelihood Method
- Also giving consistent and asymptotically unbiased estimators
- Widely used in practice

The Least Squares Method (Chi-Square)
- Giving consistent estimator
- Linear chi-square estimator is unbiased
- Frequently used in histogram fitting

Likelihood function

- Assume that observations (events) are independent
 - With the PDF depending on parameters \(\theta : f(x; \theta) \)

- **The probability that all \(N \) events will happen**, i.e. the PDF of \(x \) is, by independence, a product of all single events PDFs
 \[
 P(x; \theta) = P(x_1, \ldots, x_N; \theta) = \prod_{i=1}^{N} f(x_i; \theta)
 \]

- When the variable \(x \) is replaced by the observed data \(x^0 \), then \(P \) is no longer a PDF

- It is usual to denote it by \(L \) and call \(L(x^0; \theta) \) the **likelihood function**
 - Which is now a function of \(\theta \) only
 \[
 L(\theta) = P(x^0; \theta)
 \]

- Often in the literature, and throughout this lectures, it’s convenient to keep \(X \) as a variable and continue to use notation \(L(X; \theta) \)

Maximum likelihood method

- Reminder: the probability that all \(N \) independent events will happen is given by the **likelihood function**
 \[
 L(x; \theta) = \prod_{i=1}^{N} f(x_i; \theta)
 \]

- The principle of maximum likelihood (ML) says:
 - **The maximum likelihood estimator** \(\hat{\theta} \) is the value of \(\theta \) for which the likelihood is a maximum!

- In words of R. J. Barlow: "You determine the value of \(\theta \) that makes the probability of the actual results obtained, \(\{x_1, \ldots, x_N\} \), as large as it can possibly be."

- In practice it’s easier to maximize the **log-likelihood function**
 \[
 \ln L(x; \theta) = \sum_{i=1}^{N} \ln f(x_i; \theta)
 \]

- For \(p \) parameters we get a set of \(p \) likelihood equations
 \[
 \frac{\partial \ln L(x; \theta)}{\partial \theta_j} = 0, \quad j = 1, 2, \ldots, p
 \]

- It is often more convenient the **minimize** \(-\ln L\) or \(-2\ln L\)
 - Minimization with MINUIT/MIGRAD or FUMILI in ROOT
Example: results of the fit

<table>
<thead>
<tr>
<th>Entries</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.56</td>
</tr>
<tr>
<td>RMS</td>
<td>0.7277</td>
</tr>
</tbody>
</table>

\[\chi^2 / \text{ndf} = 58.93 / 54 \]

p0 \[\bar{a} = -0.8647 \pm 0.8879 \]
p1 \[\bar{b} = 45.84 \pm 2.64 \]
p2 \[\bar{c} = -13.32 \pm 0.98 \]
p3 \[\bar{d} = 13.81 \pm 2.21 \]
p4 \[\bar{e} = 0.1723 \pm 0.0372 \]
p5 \[\bar{f} = 0.9873 \pm 0.0113 \]

Example – ML fit of a histogram (1/2)

Suppose one has:

- N events in a histogram with k bins
- \(n_i \) in the \(i \)th bin \(\rightarrow \) vector of data \(n = (n_1, ..., n_k) \)
- Expected number of events in each bin depend on unknown parameters \(\hat{\theta}, \hat{\nu} = (\nu_1, ..., \nu_q) \)
- Given \(\nu \), probability to have \(n_i \) is \(f(n_i; \nu) \)
 - Usually probability is Poissonian:
 \[f(n_i; \nu) = \frac{\nu^{n_i} e^{-\nu}}{n_i!} \]

The likelihood function is:
\[L(n; \nu) = \prod_i^n \frac{\nu^{n_i} e^{-\nu}}{n_i!} \]

To find best estimate of \(\hat{\theta} \) we have to maximize \(\ln L(n; \nu) \) based on the contents of the bins

Example – ML fit of a histogram (2/2)

In can be shown that this procedure is equivalent to maximizing the likelihood ratio
\[\hat{\lambda}(\theta) = \frac{L(n; \nu(\theta))}{L(n; \nu)} = \frac{L(n; \nu(\theta))}{L(n; \nu(m))} \]

- Where \(m = (m_1, ..., m_k) \) are true (unknown) values of \(n \)
- Best bin-to-bin model independent maximum likelihood estimate of \(m \) is actually \(n \)

Maximizing \(\hat{\lambda}(\theta) \) is equivalent to minimizing
\[-2 \ln \hat{\lambda}(\theta) = 2 \ln(L(n; \nu(\theta))) - n_i \ln \frac{n_i}{\nu_i(\theta)} \]

Which is now much easier to implement than maximizing \(\ln L(n; \nu) \)

In case where \(n_i = \theta \), last term in eq. above is zero

Extended maximum likelihood

In the usual maximum likelihood method

- Parameter relevant to the shapes of distributions are determined
- Absolute normalization is equal to the observed number of events

If we want to estimate the absolute normalization the so called “Extended maximum likelihood method” is used

Example: From the vector of measurements \(x = (x_1, ..., x_N) \) we want to estimate number of signal events \((s) \), number of background events \((b) \) and a vector of parameters \(\theta = (\theta_1, ..., \theta_q) \)

Likelihood function is
\[L(x; s, b, \theta) = \frac{(s+b)^N e^{-(s+b)}}{N!} \prod_{i=1}^N \left(\frac{s}{s+b} P_i(x_i; \theta) + \frac{b}{s+b} P_i(x_i; \theta) \right) \]

To obtain \(s, b \) and \(\theta \) we maximize (or minimize \(-2 \ln L\))

\[\ln L(x; s, b, \theta) = -s - b + \sum_{i=1}^N \ln \left(\frac{s}{s+b} P_i(x_i; \theta) + \frac{b}{s+b} P_i(x_i; \theta) \right) - \ln(N!) \]
Least squares method

Suppose we have
- A set of precisely known values \(x = (x_1, \ldots, x_N) \)
 - For example histograms bins
- At each \(x_i \)
 - a measured value \(y_i \)
 - For example number of events in the given histogram bin
 - corresponding error on measured value \(s_i \)
- predicted value of measurement that depends on parameters \(\theta = (\theta_1, \ldots, \theta_p) \) we want to estimate: \(F(x_i; \theta) \)

Suppose that measurements are independent

To find best estimate of \(\theta \) we minimize the suitably weighted summ of squared differences between measured and predicted values → so called “least squares” or “chi-square”

\[
\chi^2(\theta) = \sum_{i=1}^{N} \left(\frac{(y_i - F(x_i; \theta))^2}{\sigma_i^2} \right)
\]

Pearson’s vs Neyman’s chi-square

If \(y_i \) are Poissonian distributed, there are two choices
- Reminder first: for Poissonian variance = mean value \((\sigma^2 = \mu) \)
 - So called Pearson’s chi-square (or “chi-square”)
 \[
 \chi^2(\theta) = \sum_{i=1}^{N} \left(\frac{(y_i - F(x_i; \theta))^2}{F(x_i; \theta)} \right)
 \]
 - But now \(\sigma \) depends on \(\theta \) which complicates the minimization
 - So called Neyman’s chi-square (or “modified chi-square”)
 \[
 \chi^2(\theta) = \sum_{i=1}^{N} \left(\frac{(y_i - F(x_i; \theta))^2}{y_i} \right)
 \]
- Minimization simpler
 - Easier to combine data with different basic accuracies
 - Problem with \(y_i = 0 \)
 - For example in ROOT this bin ignored
 - For small samples better use ML
- The best values of parameters \(\theta = (\theta_1, \ldots, \theta_p) \) are found by solving \(p \) equations
 \[
 \frac{\partial \chi^2(\theta)}{\partial \theta_i} = 0, \quad i = 1, \ldots, p
 \]