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04.07.2012: Higgs within reach

Proton-proton collision in the CMS experiment producing four high-energy muons (red lines). The
event shows characteristics expected from the decay of a Higgs boson but it is also consistent with
background Standard Model physics processes (Image: CMS)

At a seminar on 4 July, the ATLAS and CMS experiments at CERN presented
their latest results in the search for the long-sought Higgs boson. Both
experiments see strong indications for the presence of a new particle, which
could be the Higgs boson, in the mass region around 126 gigaelectronvolts
(GeV).
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Starting the new era

@ In the future, calendar of particle physics will be
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01.08.2012: ATLAS and CMS submit
Higgs-search papers

Protons collide in the CMS detector at 8 TeV, forming Z bosons which decay into electrons
(green lines) and muons (red). Such an event is compatible with the decay of a Standard
Model Higgs boson (Image: CMS)

The ATLAS and CMS collaborations today submitted papers to the journal
Physics Letters B outlining the latest on their searches for the Higgs boson.
The teams report even stronger evidence for the presence of a new Higgs-like
particle than announced on 4 July.
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1 Missing piece: Higgs
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Higgs mass: theoretical constraints

> Problem: Higgs mass is free parameter
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Higgs boson at LHC
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WW, ZZ fusion :

M, [GeV]

w Higgs boson (M ~125 GeV)
produced every ~10 seconds

@ L=5x1033 cm-2s-!

W, Z bremsstrahlung

o x BR [pb]

Higgs boson: decay channels
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CMS Experiment at¢he LHC, CERN

Data recorded: 2012-May-27 23:35:47.271930 GMT
Run/Event: 195099 / 137440354

Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC
The CMS Collaboration*
™~ Abstract
by
o Results are presented from searches for the standard model Higgs boson in proton-
E proton collisions at /s = 7 and 8TeV in the CMS experiment at the LHC, using
— data samples corresponding to integrated luminosities of up to 5.1fb ! at 7 TeV and
— 5.3fb ! at 8 TeV. The search is performed in five decay modes: 77, ZZ, WW, 77,
=z And bb. An excess of events is observed above the expected background, a local signif-
A icance of 5.0 standard deviations, at a mass near 125GeV, signalling the production
I of a new particle. The expected significance for a standard model Higgs boson of
[N YT s TS ST eV TaTTOTE T EX O T oSt S TR IO~y
o~ modes with the best mass resolution, 7y and ZZ; a fit to these signals gives a mass of
K 1253 + 0.4 (stat.) + 0.5 (syst.) GeV. The decay to two photons indicates that the new
— particle is a boson with spin different from one.
o
< This paper is dedicated to the memory of our colleagues who worked on CMS
s but have since passed away.
In ition of their many ¢ ions to the of this observation.
Submitted to Physics Letters B
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Expectations vs measurements

CERN-PH-EP-2012-218
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= A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector e
— at the LHC is presented. The datasets used correspond to integrated luminosities of approximately My (GeV) ] 100 150 200 G \2/50
> 48fb" collected at v5 = 7TeV in 2011 and 5.8 o' at 5 = 8 TeV in 2012. Individual searches in the E my, [GeV]
E channels H— ZZ*)— 4, H— yy and H— WW®— evuv in the 8 TeV data are combined with previously
I published results of searches for H— ZZ™, WW®), bb and r*7~ in the 7 TeV data and results from 1 Figure 2; The distribution of the four-lepton invariant mass, na, for
[ improved analyses of the H— ZZ*)— 4¢ and H— yy channels in the 7 TeV data. Clear evidence for the 2 the selected candidates, compared to t tion in
Sy production of a neutral boson with a measured mass of 126.0 + 0.4 (stat) + 0.4 (sys) GeV is presented. q the 80-250 GeV mass range, for the combination =7 TeV
o This ob T hioh b Tonifi 5.9 standard deviati ding 10 a back "l ol I b g and /s = 8 TeV data. Thewfor a SM Higgs with
Q is observation, which has a significance of 5.9 standard deviations, corresponding to a backgroun 80 100120 140 160 180 oy = 125 GeV is also shown-
- fluctuation probability of 1.7 x 10~%, is compatible with the production and decay of the Standard Model m,, (GeV)
= | Higgs boson. “
< Figure 4: Distribution of the four-lepton invariant mass for the ZZ — 4( analysis. The
=] points represent the data, the filled histograms represent the background, and the open his-
<

togram _shows the signal expectation for a Higgs boson of mass my = 125GeV, added to the
background expectation. The inset shows the 1y distribution after selection of events with
Kp > 0.5, as described in the text.
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Figure 4: The distributions of the invariant mass of diphoton can-
didates after all selections for the combined 7 TeV and 8 TeV data
sample. The inclusive sample is shown in a) and a weighted version
of the same sample in ¢): the weights are explained in the text. The

Tesult of a Nt to the data of the sum of a signal component lxed (0
my = 126.5 GeV and a background component described by a fourth-
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2hte
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H->bb: example of Multivariate analysis (MVA) fo § °F arias worr-zorz
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rdg;onstrictes, is shgwn added to the background and also overlaid for comparison with the 68% CL interval around the fitted value.
iboson background.
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p-value and hypothesis testing Measuring properties
; ; AsymptoticallyZ In A(u, my) is dis-
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the hypothesis of a SM Higgs boson signal at that mass with its =10 1k + 4 Figure 11: | Confidence intervals Jin the (u,mp) plane. for .[he
i > 205on * * . 5 1 HoZZO- I A=Yy, and VW) = fvly channels, including
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H (GeV) Figure 17: or the signal strength ¢’/ oy versus the boson mass nix for the
Figure 15:r the five decay modes and the overall combination as untagged 7, 77y Wi “Tike dijet, 4/, and their combination. The symbol o'/ o5\ denotes the
a function of the SM Higgs boson mass. The dashed line shows the expected local p-values for production cross section times the relevant branching fractions, relative to the SM expectation.
a SM Higgs boson with a mass ny. In this combination, the relative signal strengths for the three decay modes are constrained by
the expectations for the SM Higgs boson.
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Conclusions of papers - ATLAS

LANL e . . .
10 I I I I I I T These results provide conclusive evidence

mi s =7 TeV (2011), de(=4.B o' 3 for the discovery of a new particle with mass
ATLAS Prellmlnary (s = 8 TeV (2012) de( =591’ 126.0 +0.4 (stat) + 0.4 (sys) GeV. The signal
g strength parameter y has the value 1.4 + 0.3 at the

fitted mass, which is consistent with the SM Higgs
boson hypothesis u = 1. The decays to pairs of vector

1

1 0 1 bosons whose net electric charge is zero identify the
10. Conclusion new particle as a neutral boson. The observation in

102 - the diphoton channel disfavours the spin-1 hypothe-
Searches for the Standard Model Higgs boson have 5i§ [140, 141]. Allhough these resl{lls are compatible

10_3 N . been performed in the H—ZZ")—4¢, H—yy and ]\:Jdll}éll;;l?ypotesls that lhednew pa.mclill;lhe Slanda}'d
Heo WW® — evuy channels with the ATLAS experi- odel Higgs boson, more data are needed to assess its

EPS July 2011 ... Energy—sc;ale ment at the LHC}:lsing 58591 of pp collsiondata Dt in detil

1 0-4 — Observed . systematics recorded during April to June 2012 at a centre-of-mass
h energy of 8 TeV. These results are combined with car-

not included lier results [17), which are based on an integrated lu-

minosity of 4.6-4.8 fb~! recorded in 2011 at a centre-
of-mass energy of 7 TeV, except for the H— ZZ")— 4¢

-5
1 O CERN Seminar 12/2011

g — Observed and H— yy channels, which have been updated with the

1 O Expected improved analyses presented here.
F - The Standard Model Higgs boson is excluded at
10.7 Spring 2012 4 July 2012 95% CL in (he.a mass range 111—559QeV, .except for
the narrow region 122-131GeV. In this region, an ex-

Observed Observed N cess of events with significance 5.9 o, corresponding
EXDeC!eld | | i Efpemed | u to po = 1.7x 10, is observed. The excess is driven
e b b Lo e Lo e 3 by the two channels with the highest mass resolution,

||||| Ty

10°

11 0 1 15 120 125 130 135 140 145 150 H—> 272" 4¢ and H—yy, and the equally sensitive
but low-resolution H— WW® — ¢v{y channel. Taking
into account the entire mass range of the search, 110—

mH [GeV] 600GeV, the global significance of the excess is 5.1 o,

which corresponds to po = 1.7 x 1077
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Conclusions of papers - CMS

Results are presented from searches for the standard model Higgs boson in proton-proton col-
lisions at /s = 7 and 8TeV in the CMS experiment at the LHC, using data samples corre-
sponding to integrated luminosities of up to 5.1fb™ " at 7 TeV and 5.3fb™ ! at 8 TeV. The search
is performed in five decay modes: yy, ZZ, WTW~, t"1~, and bb. An excess of events is
observed above the expected background, with a local significance of 5.0, at a mass near
125GeV, signalling the production of a new particle. The expected local significance for a
standard model Higgs boson of that mass is 5.8 ¢. The global p-value in the search range of
115-130 (110-145) GeV corresponds to 4.6 (4.50). The excess is most significant in the two
decay modes with the best mass resolution, 7y and ZZ, and a fit to these signals gives a mass
of 125.3 + 0.4 (stat.) £ 0.5 (syst.) GeV. The decay to two photons indicates that the new parti-
cle is a boson with spin different from one. The results presented here are consistent, within
uncertainties, with expectations for a standard model Higgs boson. The collection of further
data will enable a more rigorous test of this conclusion and an investigation of whether the
properties of the new particle imply physics beyond the standard model.

We’ll come back to this at the end of lectures

|
Evolution of excess: ATLAS H->yy
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Evolution of excess: CMS H>ZZ->4/
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Evolution of language

@ February 2012

® Combined results of searches for the standard model Higgs boson in pp
collisions at sqrt(s) = 7 TeV

® By CMS Collaboration, Phys. Lett. B710 (2012) 26-48
July 2012

® Observation of a new boson with a mass of 125 GeV with the CMS
experiment at the LHC
® By CMS Collaboration, Phys. Lett. B716 (2012) 30-61

@ December 2012

® Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via Its
Decays to Z Boson Pairs

® By CMS Collaboration, Phys. Rev. Lett. 110 (2013) 081803
July 2013

® Measurements of Higgs boson production and couplings in diboson final
states with the ATLAS detector at the LHC
® By ATLAS Collaboration, Phys. Lett. B 726 (2013) 88

@ March 2015

® Combined Measurement of the Higgs Boson Mass in pp Collisions at sqrt(s)
= 7 and 8 TeV with the ATLAS and CMS Experiments

©

©

® By ATLAS and CMS Collaborations, Phys.Rev.Lett. 114 (2015) 191803
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Outline of Lecture Series

1. Introduction, Monte Carlo methods and

distributions
2. Estimators and confidence intervals
3. Confidence intervals

4. Hypothesis testing
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In this lecture

@ Introduction to data analysis

® Confirmatory and exploratory data analysis
® Quantitative vs graphical techniques
® Experimental vs observational studies

® Exploring the data
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Data Analysis

Lecture 1: Introduction to data analysis and
Monte Carlo methods
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Data analysis, statistics and probability

@ Data analysis is the process of transforming raw data into
usable information

RAW data Data analysis

@ Data analysis uses statistics for presentation and
interpretation (explanation) of data

Usable information

® Descriptive statistics
¢ Describes the main features of a collection of data in quantitative terms
® Inductive statistics

¢ Makes inference about a random process from its observed behavior
during a finite period of time

@ A mathematical foundation for statistics is the probability
theory
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Confirmatory and exploratory data analysis

@ Confirmatory data analysis = Statistical hypothesis testing
® A method of making statistical decisions using experimental data
® Two main methods

¢ Frequentist hypothesis testing
- Hypothesis is either true or not

¢ Bayesian inference
- Introduces a “degree of belief”

@ Exploratory data analysis

® Uses data to suggest hypothesis to test

® Complements confirmatory data analysis

® Main objectives:
¢ Suggest hypothesis about the causes of observed phenomena
¢ Asses assumptions on which statistical inference will be based
¢ Select appropriate statistical tools and techniques
¢ Eventually suggest further data collection
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Experimental vs observational studies

@ Experimental studies

: Measure
compare

® Example: Study of whether and how much a free coffee would
improve working performace of scientists in Building 40 at CERN

@ Observational studies
® No experimental manipulation
@ Data are gathered and analysed
® Example:

¢ Study of correlation between number of beers drunk in a pub
on Wednesday evening on performance on the exam the day
after

¢ Be careful who pays! - see later
¢ One could discuss whether to manipulate or not the system ©
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Quantitative vs graphical techniques

@ Quantitative techniques yield numeric or tabular output
@ Hypothesis testing
® Analysis of variance
® Point estimation
@ Interval estimation

@ Graphical techniques

® Used for gaining insight into data sets in terms of testing
assumptions, model selection, estimator selection ...

® Provide a convincing mean of presenting results

® Includes: graphs, histograms, scatter plots, probability plots,
residual plots, box plots, block plots, biplots

® Four main objectives:
¢ Exploring the content of a data set
¢ Finding structure in data
¢ Checking assumptions in statistical models
¢ Communicate the results of an analysis

e
Experiments — basic steps
( A
. * Select subject to study
Planmng + Select an information source
\_ J
( Desi d Design an experiment h
eSI.gn. an * Build and test a model (f.g. MC simulation)
L BU”dmg * Once happy with the model build the experiment )
>
. « Employ descriptive statistics to summarize data )
Collecting data » Suppres details _
L + Early exploratory analysis )
( T - A
. « Statistical inference
Analysmg data + Reach a consensus what observations tell
about an underlaying reality )
N
( . A
Presenting + Publish article and disseminate results
Docu menting * Enjoy in the fruits of the hard work!
\_ J
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What we (will) measure at LHC?

Something we already know

o At the very beggining of the LHC operation

* For example: production of W and Z
bosons

Hopefully something new but

reasonably expected

¢ Altought “reasonably” is not very well
defined ©

« For example we all expected to find the
Higgs boson - and we did find it!

Something that (probably)

exists but wasn't measured yet

e Simply because we are exploring new
energy domain

» Standard Model processes

o But surprises are always possible

Maybe something new but less
likely

¢ New heavy bosons (Z, W)

¢ Micro black holes

o Extra dimensions

LHC experiments — basic steps
( A
. « Started ~ 30 years ago (Aachen 1989)

Planmng « Core teams from previous experiments UA1&2
_ J
( . » ‘Best’ experimental design chosen (CMS, h

Design ATLAS, ALICE and LHCb)
ildi * Detailed MC simulations performed before
_ BU|Id|ng started to build )
( A
: « Trigger and DAQ carefully planed and built
CO”eCtlng data * MC simulation used for optimization
_ J
>
. « Statistical inference > a part of work done

Ana|ys|ng data at this school too (learning methods&tools)
L * For the consensus > let’s see © )
. A

Presentlng « Many articles published

DOCU menting » And first discoveries announced and published!

\_ J

Some of the physicists’ jargon
@ Cross section (o)

® A measure of ‘frequency’ of the physical process
® Units: barns (10-28 cm?2)
¢ Typical values: femtobarns (fb), picobarns (pb)
@ Luminosity (L)
o Or instantenous luminosity
® A measure of collisions ‘frequency’
¢ Typical (at Tevatron/Early LHC): L = 1032 cm-2st
@ Integrated luminosity (¢ = [Ldt)

® A measure of number of accumulated collisions after a certain time
period

® Units: (cross section)! ... E.g. 1 fb-1= 1000 pb-!
¢ Typical (Tevatron/Early LHC): few fb-!
@ Number of events (N)
® Number of (expected) events (N) after a certain time of running
N=oc-/4

CSC2019
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| e Heavy neutrions? ‘

Something completely unexpected
* Well, it's hard to look for unexpected ©
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Data collected by CMS in Run 1

Data included from 2010-03-30 11:21 to 2012-12-16 20:49 UTC
2

5
= 2010, 7 TeV, 44.2 pb |  wemm 2011, 7 TeV, 6.1 fh ' e 2012, 8 TeV, 23.3 b !

= N
@ =)
= N
« =)

"
o

=

o

Total Integrated Luminosity (b ')
w

rxlou 5
o

‘\o“ &(,eQ ‘oe‘- \)p@‘ &\o“ x"e(’ ‘oe‘- "‘;(o‘
Date (UTC)

C
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Measuring physical objects

om m m 3m

Key:

Muon

Electron

Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g. Neutron)
----- Photon

silicon
Tracker

)

Tiansverse slice
through CMS

Electromagnatic
Calorimeter

Hadron
Calorimeter

n return ers i
with Muon chambers i
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Data analysis — general picture
For example, let’'s suppose the
TRUE state of nature is:

Higgs boson exists with the mass
of my(true) = 134.26 GeV

The main goal:
learn more about NATURE

ﬂMake an experiment and

obtain a 3
/ i
! py

DATA SAMPLE

Events collected
after some time of

LHC running
Event 1 Object 1
Event 2 Object 2 ic
o e E
Event N Object k

Objects = reconstructed objects
i. e. electrons, photons, jets,
muons ...

N ~ 100/s x 107 s/year
N ~ 10° events per year
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Data analysis

Sampling a reality

general picture

(W

Ilshys\ilcani
"phenomena ~

Experiment

ana YSIS

‘Described by, a theory,

Described by PDFs,
depending on p uknown

Data sample

= (X, Xy5ee s Xy) =(0", 6, ,.

For example

5 X =
Results

» parameter estimates
« confidence limits
* hypothesis tests

I. Puljak: Data Analysis

For example:

0 true

event,,...,event
1 N

In statistics x is a multivariate random variable
(each event has many properties, all potential
variables)

CSC2019 15 - 28 September 2019, Cluj-Napoé2

parameters with true values

0 )

true true true
=(my<,Am™,.. ..o

Analysis steps in typical LHC analysis

Event reconstruction

Event selection

~

Background estimation

~

Systematic uncertainties

~

Yields and kinematics distributions

~

Kinematic discriminant

~

7 ) Statistical analysis and results

I. Puljak: Data Analysis
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Signal vs background(s)

@ Signal: an event coming from the physical process under study
® Example: H> ZZ->e*e-e*e- (henceforth both e+ and e- are ‘electron’)

@ Background: any other event

® '‘Dangerous’ background is any other process giving at least 4
electrons in the final state

¢ But be careful: electrons seen by detector are reconstructed
objects and in some cases when some other objects (f.g. jets)
are misreconstructed as electrons
® '‘Trivial’ backgrounds are all other backgrounds and are easily
rejected by a simple requirement of having at least 4 electrons in the
final state

q e

Signal: pp>H>ZZ->4e

I. Puljak: Data Analysis CSC2019

‘Dangerous’ background: pp>ZZ->4e
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Separating signal and background

@ Ultimate goal of the analysis: separate as much as possible signal
from background events to obtain a reduced sample as clean as
possible

® This is usually obtained in several steps

[ Preselection ’ ‘ Selection

Trigger ]

® Usually all these steps have substeps
® More in example on the next page

@ Be aware:

® Nature is probabilistic, i.e. for a given event it'll never be possible to
tell whether it’s signal or background!

® We can only make an educated guess > attribute probabilities that
the observed event comes from signal or background

p(event|signal) and p(event|background)

@ Very often we have to solve the following statistical problem: maximum
reduction of the background for a given signal acceptance
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1 / g

Background?

Exploring the data

@ Once data are collected - exploratory data analysis
® Heavily use of graphical techniques

@ Example: data reduction = Preselection
® Goal: getting rid of all unuseful events
® Unusefullness is not uniquely defined:

¢ We have a certain interest to keep some background events for
better control and its measurement from data

® Some numbers:

¢ ~ 109 events collected per year (after trigger)

¢ ~ 1 MB event size on a tape (rought estimate)

¢ = ~ 1 PB of data collected per year - non manageable at once
® Interested physical processes are rare

¢ F.g. just a handful (~10) H>ZZ->4e events per year

¢ So be careful when choosing criteria for data reduction not to
lose too many signal events
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Example: H>ZZ->4e in CMS

@ Very basic cuts: High Level Trigger+ > 3 electrons, any
charge and p;*23 > 10, 10, 5 GeV/c

@ Preselection cuts:

. H>ZZ*>4e CMS Preliminary
® > 2 e pairs of identified, ALl T ® QCD-e eniched
opposite charge and same &\3107;. . gj"j"ef
flavor leptons with I I ttnjets
6l e *  Zbb
“pr>5Gev/c; Il <25 ' ° s z :
® At least two me > 12 GeV/c2 S0 . £ signal 150 GaVie 4
: s E
® At least one m,, > 100 GeV/c2 | - .
® Loose track based isolation 1wk . . b d ]
E ® ° )

9 After these steps 102} R .
® Some background gone 10k ! A N I 5]
® Some heavily reduced : . "
® Some still resisting F M R R

| | Il L

@ Full selection needed for the
final analysis

ey, Fey Tep m, Yoo,
e ey, e 's > 7, > 7, "Se
s (St bc"%s, c?Gey,c N ooGeV/c N ’Warfoh
Barge
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Probability

Random variables
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Analysis steps with some details

Just for illustration
(not for exam ©)

~

|

reconstruction

Trigger Level 1 Trigger: Electron-gamma and muon seed ]
High Level Trigger : Multilepton paths
Object Electrons Muons

~

Isolation, ID, SIP;p Isolation, ID, Sl

)

/Event selection

-

Z1: A pair of opposite sign same flavor leptons closest to Z, with 40 < M|| <120 GeV '

22: Remaining lepton combination with highest pr sum and with 12 < M|| <120 GeV '

Additional: at least one lepton with Pt > 20 GeV and one with Pt > 10 GeV, ]

all opposite-charge lepton pairs with my, > 4 GeV

Higgs boson phase space: my > 100 GeV ]
el

-
Analysis ( ) L
Y Statistical ()
analysis -
o
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Probability — basic concepts

@ Definitions of probability

® Mathematical probability

¢ Probability is a basic and an abstract concept
® Frequentist probability

¢ Using only measured frequencies
® Bayesian probability

¢ Based on a degree of belief

CSC2019
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Mathematical probability

@ Developed in 1933 by Kolmogovor in his “Foundations of the Theory of
Probability”

@ Define Q as an exclusive set of all possible elementary events x;

® Exclusive means the occurence of one of them implies that none of
the others occurs

@ We define the probability of the occurency of x;, P(x,) to obey the
Kolmogorov axioms:

(a) P(x;,)=0 foralli
(b) P(x; or x,) = P(x,)+ P(x,)

(© D P(x)=1

@ From these properties more complex probability expressions
can be deduced

® For non-elementary events, i.e. set of elementary events
® For non-exclusive events, i.e. overlapping sets of elementary

events
1. Puljak: Data Analysis CSC2019 15 - 28 September 2019, Cluj-Napoca LX)

|
Bayesian probability

@ Based on a concept of “degree of belief”

@ An operational definition of belief is based on coherent bet by Finneti

® What's amount of money one ‘s willing to bet based on
her/his belief on the future occurence of the event

@ Bayesian inference uses Bayes’ formula for conditional probability:
P(D|H)P(H
P | )= PRLEDPED
@ His a hypothesis, and D is the data. P(D)

@ P(H) is the prior probability of H: the probability that H is correct
before the data D was seen.

@ P(D|H) is the conditional probability of seeing the data D given that
the hypothesis H is true. P(D|H) is called the likelihood.
@ P(D) is the marginal probability of D.
® P(D) is the prior probability of witnessing the data D under all possible
hypotheses

@ P(H|D) is the posterior probability: the probability that the hypothesis
is true, given the data and the previous state of belief about the hypoth.
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Frequentist probability

@ Experiment:
® N events observed

® Out of them #n is of type x
@ Frequentist probability that any single event will be of type x

P@)= fim -

@ Important restriction: such a probability can only be applied to
repeatable experiments

® For example one can't define a probability that it’ll snow tomorrow

® Altough this seems to be a serious problem, a job of scientist is to
try to get as close as possible to repeatable experiments and
produce reproducible results

@ Frequentist statistics is often associated with the names of Jerzy
Neyman and Egon Pearson

I. Puljak: Data Analysis CSC2019
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Bayesian statistics: Learning from experience

A. Heikinnen, CSC 2009, Gottingen

Example: Who will pay the next round?

You meet an old fried at Gottingen in a pub. He proposes that the next round
should be payed by whichever of the two extracts the card of lower value from a
pack of cards.
This situation happens many times in the following days. What is the probability
that your friend cheats if you end up paying wins consecutive times?
You assume:

o P(cheat) = 5% and P(honest) = 95%. (Surely an old friend is an unlikely

cheater ...)
o P(wins|cheat) = 1 and P(wins|honest) = 2~"ins

BayeS|;rECs:e|;J:|‘c;:1i;1$) B P(wins|cheat)P(cheat)
"~ P(wins|cheat)P(cheat) + P(wins|honest)P(honest)

1P(cheat) 0.05
P(cheat|0) = = =5
(cheat|0) 1P(cheat) + 2=9P(honest)  0.05 + 0.95 %
1P(cheat 0.05
P(cheat|5) = (cheat) = 63%

1P(cheat) + 2-5P(honest) _ 0.05+ 0.03

2Adapted from G. D'Agostini, Bayesian Reasoning in High-Energy Physics: Principles and
Applications, CERN-99-03, 1999
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Bayesian statistics: Learning from experience

Example: Learning by experience

The process of updating the probability when new experimental data becomes
available can be followed easily if we insert
o P(cheat) = P(cheat|wins — 1) and P(honest) = P(honest|wins — 1),
where wins — 1 indicate the propability assigned after the previous win
o P(wins = 1|cheat) = P(win|cheat) =1 and
P(wins = 1|honest) = P(win|honest) = }
Iterative aplication of the Bayes formula for P(cheat|wins)=
P(win|cheat)P(cheat|wins — 1)
P(win|cheat)P(cheat|wins — 1) 4+ P(win|honest)P(honest|wins — 1)

_ P(cheat|wins — 1)
 P(cheat|wins — 1) + 3 P(honest|wins — 1)

‘I;(Cheat) P(fo:;“’;’”s) 10 15 When you learn from the
0 — .

experience, your conclu-
; gg 351; 9999;374 sions no longer depend on
50 97 900 googy theinitial assumptions.
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Random variables

@ Random event: event having more than one possible outcome
® Each outcome may have associated probability
@ Outcome not predictible, only the probabilities known
@ Different possible outcomes may take different possible numerical
values x,, x,, ... > random variable x

® The corresponding probabilities P(x,), P(x,), ...
distribution

form a probability

@ If observations are independent the distribution of each random
variable is unaffected by knowledge of any other observation

@ When an experiment consists of N repeated observations of the
same random variable x, this can be considered as the single
observation of a random vector x, with components x,, ..., xy

I. Puljak: Data Analysis CsC2019

A. Heikinnen, CSC 2009, Géttingen
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Bayes’ theorem A. Heikinnen, CSC 2009, Géttingen

Example: Priors and posteriors — expressing degree of belief

Phil is learning from experience:

"Denier"

>
=
wv
c
()
(]
Z
;; Phil Current
9 IP
0 CcC
1
o.

-1.5 0 1 2 3 4 5 6 7 8 9

Climate Sensitivity (Degrees C per doubling of CO2)

(From discussion of climate change on Andrew Gelman's blog.)

CSC2019 15 - 28 September 2019, Cluj-Napoca 58

Random variables: discrete

@ Rolling a die:

® Sample space = {1,2,3,4,5,6}

® Random variable x is the number rolled
1 ifalisrolled

if a 2 isrolled
if a 3is rolled
if a 4isrolled
if a Sisrolled
if a 6isrolled

=
Il

AN W

@ Discrete probability distribution

L A A A A

INEEEEN

123456
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Random variables: continuous

@ A spinner
® Can choose a real number from [0,2n]

® All values equally likely
® X = the number spun
® Probability to select any real number = 0
® Probability to select any range of values > 0
¢ Probability to choose a number in [0,n] = 1/2
® Now we say that probability density p(x) of x is 1/2n
® Probability to select a number from any range Ax is Ax/2n
® More general

P(A<x<B)= p(x)dx
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Cumulative and marginal distributions

@ Cumulative distribution function, CDF

® For every real number Y, the CDF of Y'is
equal to the probability that the random 1.0

variable x takes a value less or equal to ¥ 08k
Cumulative

Y Po—wf -
FY)=P(x<Y)= If(x)dx Distribution

06
. A Function
e If x restricted to x,,,, < X < X,,, then F(x,,;,) //:j L PP
= 0, F(xmm,) =] |3 |1 1 1 1

® F(x) is a monotonic function of x ’

@ Marginal density function

® Is the projection of multidimensional
density

e Example: if f(x,y) is two-dimensional PDF P
the marginal density g(x) is )

Probability
Density
Function
(PDF)

Probability density function

9@ Letxbe a possible outcome of an observation and can take any
value from a continuous range

@ We write f{x;§)dx as the probability that the masurement’s
outcome lies betwen x and x + dx

@ The function f{x;@dx is called the probability density function
(PDF)

® And may depend on one or more parameters 6

9@ If f(x,6) can take only discrete values then f{x; 9 is itself a
probability

@ The p.d.f. is always normalized to unit area (unit sum, if
discrete)

@ Both x and  may have multiple components and then written
as vectors

@ If ¢ is unkown we may wish to estimate its value from a set of
measurements of x & Parameter estimation in Lecture 3

g = [ )y

y
|||||
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@ Introduction to Monte Carlo method
® Monte Carlo techniques
® Monte Carlo in HEP

I. Puljak: Data Analysis CsC2019 15 - 28 September 2019, Cluj-Napoca 64



I. Puljak: Data Analysis

CSC2019

15 - 28 September 2019, Cluj-Napo6d

| > Design studies
= optimize detectors before building them
= estimation of performances, costs ...

> Development of reconstruction algorithms

= exploring different algorithmes,

= tuning parameters

= optimizing analysis
» Simulation is a good way to save money!

' —

> But, there is'even a “deeper” reason!
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. From M. Lienc..il, Experiment Simulation — CSC 2008
Example: classical mechanics
Galilei . Newton: mechanics
A Brahe observations and gravitation
il Kepler I N
O ,;‘.
I % | = GMAJ:’B
X e o 0 [ragf? i
[ EXPERIMENT } THEORY
&
4
OBSERVABLES }
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This and many follwing pages adopted from Wikipedia

Monte Carlo method

@ Monte Carlo methods (MCMs) are a class of computational
algorithms that rely on repeated random sampling to compute
their results

® MCMs use random or pseudo-random numbers

® MCMs tend to be used when it is unfeasible or impossible to
compute an exact result with a deterministic algorithm

@ The term "Monte Carlo method" was coined in the 1940s by
physicists working on nuclear weapon projects in the Los
Alamos National Laboratory

@ Generally MCMs are used in
® Studying systems with a large number of coupled (interacting)
degrees of freedom
¢ such as fluids, disordered materials, strongly coupled solids, and
cellular structures
® Modeling phenomena with significant uncertainty in inputs
¢ such as the calculation of risk in business
® FEvaluation of definite integrals

¢ particularly multidimensional integrals with complicated boundary
conditions
1. Puljak: Data Analysis
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Example 1: estimating T

—

Monte Carlo Methods - usual pattern
1 Define a domain of possible inputs
2 Generate inputs randomly from the domain
3 Perform a deterministic computation using the
inputs
4 Aggregate the results of the individual computations
into the final result
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From M. Liendl, Experiment Simulation — CSC 2008

Example 2: integration

1

“—

-
Define a domain of possible inputs

Draw a square on the ground, then inscribe a
circle within it

1 —circle; 2 — square

@ Analytical solution

@ Deterministic algorithm

-
Generate inputs randomly from the domain

2 Uniformlly scatter N objects of uniform size
throughout the square.

Y
3 Perform a deterministic computation using the inputs
Count number of objects in the circle = n

4 3\
Aggregate the results of the individual computations into the final

4 result

I Estimate pias 7~ 4 xn/N ) aeax122/153-3.19
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f(x) = x f(x) = x
'y A
/
A
; b o a b
n .. number of steps
Ix-dx = 1/2:x?
ax =(b-a)/n
A=1/2 (b*-a?

A~ f(a+i-ax)ax
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Monte Carlo solution o

f(x) = x
A

n pairs of random numbers:
p=(X,y), i=1.n
X; ... equally distributed in [a,b]
y; ... equally distributed in [0,b]

set a counter ¢=0

for each pair p;:
¢ =c+1only if p, within A

X, b A ~ c/n-B = c/n-(b-a)-b

Statistical estimation of the integral.

B = (b-a)-b :
The better, the more pairs p,
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Inversion method

@ Let x be a random variable whose distribution can be described
by the cumulative distribution function Fx).

@ We want to generate values of x which are distributed
according to this distribution.

1.0+

@ Method:
u 08 :_
Cumulative
1. Generate a random number from the " pistibuton
standard uniform distribution; call this u. (CDF)
0z
o
2. Compute the value x such that F(x) = u; call
this Xghosen- N
Probability
Density

Function
(PDF)

—
&
o
=Y

from the distribution described by F.

| I
3 2 4 0 «1 2 3 X

[3. Take Xghosen 10 be the random number drawn ] P

Xchosen
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T
Random number generation

@ Physical methods
@ “true” random numbers from “unpredictable” process
¢ Example: dice, coin flopping, roulette - still in use

® TRUE random numbers from random atomic or subatomic physical
phenomena

¢ Example: radioactive decay, amplitude of noise in radio

@ Computational methods

® Pseudo-random number generators create long runs (for example,
millions of numbers long) with good random properties but

eventually the sequence repeats 0% b d
¢ Example: Linear congruential generator n+l _(aXn +b)ymodm

@ Generation from a probability distribution f(x)
® Generate random numbers distributed according to the f(x)

® Method involves transforming an uniform random number in some
way

¢ Examples: inversion method, acceptance-rejection method

I. Puljak: Data Analysis CSC2019 15 - 28 September 2019, Cluj-Napoca 74

Acceptance-rejection method

@ It generates sampling values from an arbitrary PDF function f(x) by
using an instrumental distribution h(x) for which we know how to
sample

® under the only restriction that f(x) < Ch(x) where C > 1

@ Usualy used in cases where the form of f(x) makes sampling difficult
@ Algorithm

) (a) /C hix)
1. Sample x from h(x) and u from U(0,1) S
g /\ﬂxr
2. Check whether or not u < f(x) / Ch(x). ®
NO J C hix)
YES ~_ <
N flx)
[ 3. Accept x as a realization of f(x) /
Figure from PDG
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MC methods in engineering

@ Wireless network planing

® Various scenaria depending on: number of users, users’
location, services users want to use

® MC used to generate users and their states, so that
network performace can be evaluated and optimized

@ Computer graphics

® MC methods efficient in production of photorealistic
images of virtual 3D models

® Application in video games, computer generated films,
special effects in cinema
@ Wind power engineering

® From measured distributions of wind speeds MC

generates single values for wind power sistem performace
evaluation and optimization
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Adopted from T. Sjostrand, CERN Academic Training Lectures 2005

Monte Carlo in HEP
Simulation

Event Generation

Tools: MC generators (PYTHIA, ...)
Output: final state particles

‘Real life’

Collisions

Tools: Accelerator (LHC, Tevatron ...)
Output: final state particles

L+ ¥
Detector simulation Data acquisition
Tools: MC simulators (GEANT) Tools: Detectors (CMS, ATLAS,...)

Output: simulated detector response Output: detector response

< .
Tools: Detectors’ software packages (custom made; MC used in algorithms)
Output: reconstructed physical objects (electrons, muons, jets ...)

Data analysis
Tools: Statistics (ROOT, ...; MC used in algorithms; f.g. Toy MC)

Output: new knowledge (parameter/interval estimates, hypothesis tests, article, talks ...)
I. Puljak: Data Analysis
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Monte Carlo in HEP

@ Monte Carlo methods are widely
used in High Energy Physics
® Theoretical calculations

¢ Total cross sections, differential cross
sections distributions ...
e Event generation

¢ Distribute events according to expected
probabilites

¢ Many event generators on the market: < *| LEP smmcy  Loose
f.g. PYTHIA, HERWIG G o b [T g
e Detector simulation 3 I S 16 Gev) |
¢ Passage of particles through the matter § Bl e
¢ GEANT g B
e Data analysis
¢ Background predictions (if not 5T
measured from data) . 1
¢ Signal predictions O

) myrec (GeV/c?
¢ Final results
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