

Principles of Data Visualization I

Eamonn Maguire
CERN School of Computing, Romania
September 2019

Visualization Analysis \& Design

Tamara Munzner

A lot of the content for this introduction comes from this book from Prof. Tamara Munzner (UBC, Vancouver, Canada) which I created the illustrations for.

If you're interested in learning more, it's a great book to check out:)

Visualization

The role of visualization systems is to provide visual representations of datasets that help people carry out tasks more effectively.

Tamara Munzner

A Visualization should:

1. Save time
2. Have a clear purpose*
3. Include only the relevant content*
4. Encodes data/information appropriately
[^0]
Visualization

The role of visualization systems is to provide visual representations of datasets that help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

A Visualization should:

1. Save time
2. Have a clear purpose*
3. Include only the relevant content*
4. Encodes data/information appropriately
[^1]
Visualization

The role of visualization systems is to provide visual representations of datasets that help people carry out tasks more effectively.

External representation: replace cognition with perception

Visualization

The role of visualization systems is to provide visual representations of datasets that help people carry out tasks more effectively.

Data Panel							¢
						\square	
ID	Function	LPSLL37_1	LPSLL37_1_pvals	LPSLL37_2	LPSLL37_24	LPSLL37_24_pvals	
IRAK2	Kinase	2.367	0.251	1.337	-1.553		
NFKB2	Transcription factor	-1.14	0.972	-1.03	1.303	0.807	
CXCL2	Chemokine	1.853	0.376	4.111	-1.019	0.745	
CHUK	Kinase	-1.376	0.373	2.232	1.194	0.387	,
IL13	Cytokine	-5.961		2.139	-1.236	0.601	
RELA	Transcription factor	-1.077	0.564	-1.169	1.943	0.594	
IKBKB	Kinase	1.167	0.29	1.421	-1.907	0.286	
CCL4	Chemokine	1.254	0.878	-1.052	1.499	0.761	
MAP3K7		1.01	0.956	-1.096	1.222	0.8	
ICAM1	Adhesion	1.184	0.669	1.537	1.392	0.671	
IRF1	Transcription factor	-1.013	0.519	1.416	1.081	0.995	
CXCL3	Chemokine	1.7	0.905	1.092	-1.598	0.521	
IL12B	Cytokine	-2.448	0.042	-1.473	-2.109	0.08	
CCL11	Chemokine	-1.338	0.349	-1.995	-1.785	0.129	
MAP3K7IP1	Adaptor						$\stackrel{\square}{*}$
IFNG.	Cvinkine	-115	$\bigcirc 801$	1075	1053	$0571)+$	\checkmark

External representation: replace cognition with perception

Visualization

The role of visualization systems is to provide visual representations of datasets that help people carry out tasks more effectively.

What are we visualising?

Why are we visualising it?

How can we visualise?

How can we visualize? visualization?

Why do the users need this, and what do they need to be able to do with it?
What is the need for this

The components of a visualization.

Good and bad practices.

What are we visualising?

```
How can we visualise?
```

Major data types \& classifications of them

What is the need for this
 visualization?

How can we visualize?

The components of a visualization.

Good and bad
practices.

What are we visualising?

DATA TYPES
Θ STATIC

Θ DYNAMIC

DATASETTYPES

Θ TABLES

Cell containing value
\rightarrow Multidimensional
Table

Θ NETWORKS

\rightarrow Trees

Θ FIELDS (continuous)

Θ TEXT
\rightarrow Prose Documents
\rightarrow Document Collections
\rightarrow Log Files
\rightarrow Code
\rightarrow Multimedia

ATTRIBUTE TYPES

Θ CATEGORICAL
Θ ORDERED
\rightarrow Ordinal \rightarrow Quantitative \rightarrow Sequential \rightarrow Diverging \rightarrow Cyclic
$+\bullet ■ \Delta$
\square

What are we visualising?

Θ STATIC

For static data, we have fixed scales.

We know our data range, therefore scales will not change.

What are we visualising?

Θ STATIC

For static data, we have fixed scales.

We know our data range, therefore scales will not change.
Θ DYNAMIC

For dynamic data, the observed min and max values can change, therefore scales will change.

This can have big consequences for the readability of our visualization.

What are we visualisina?

Major data types \& classifications of them

Why are we visualising it?

How can we visualise?

What is the need for this visualization?

Why do the users need this, and what do they need to be able to do with it?

How can we visualize?

The components of a visualization.

Good and bad practices.

Why are we visualising?

The role of visualisation systems is to provide visual representations of datasets that help people carry out tasks more effectively.

Anscombe's Quartet: Raw Data

The statistics would lead us to believing that everything is the same

	1		2		3		4	
	X	Y	X	Y	X	Y	X	Y
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
Correlation	0.816	0.816	0.816	0.816				

Datasaurus!

	X Mean: 54.26
	Y Mean: 47.83
	X SD: 16.76
\cdots	Y SD: 26.93
\%.	Corr. : -0.06

From https://www.autodeskresearch.com/publications/samestats

Why are we visualising?

Every visualisation should be thought of as a product of what actions the user needs to take to get to their objective (target)

Actions

Why are we visualising?

Every visualisation should be thought of as a product of what actions the user needs to take to get to their objective (target)

S Actions

Θ Search

	Target known	Target unknown
Location known	- \because - Lookup	- \odot Browse
Location unknown	< ${ }^{\circ} \mathrm{O} \cdot$-> Locate	< ${ }^{\text {O- }}$ - Explore

Θ Query

© Targets
Θ All Data

Θ Attributes

\downarrow Extremes illı.

Why are we visualising?

Every visualisation should be thought of as a product of what actions the user needs to take to get to their objective (target)

S Actions

Θ Search

	Target known	Target unknown
Location known	$\ddots \cdot \cdot$ Lookup	\ddots Browse
Location unknown	$<. \bigcirc \cdot\rangle$ Locate	$\left.<. \varrho_{\cdot} \cdot\right\rangle$ Explore

Θ Query

© Targets
Θ All Data

Θ Attributes

\downarrow Extremes .llı.

Always keep in mind why you're doing something. If what you create does not show what you intended, confuses, or misleads, it's time to rethink :)

Why are we visualising?

Given a large matrix, or even a large series of numbers, it's difficult for humans to 'see’ patterns in the data.

With a visualisation we want to transition a cognitively demanding task to a perceptual (less demanding) one.

Why are we visualising?

Even in this simple example, it is cognitively demanding to read off all the information.

Category	Sub-Category	Consumer	Corporate	Home Office	Small Business
Furniture	Bookcases	-45.93	$-9,300.00$	$-16,000.00$	$-7,600.00$
	Chairs \& Chairmats	$42,900.00$	$41,300.10$	$41,000.00$	$25,600.00$
	Office Furnishings	$12,000.00$	$27,300.10$	$42,000.00$	$18,600.00$
	Tables	$-12,300.00$	$-35,400.10$	$-43,000.00$	$-8,000.00$
Technology	Computer Peripherals	$14,100.56$	$45,300.00$	$17,000.00$	$17,300.00$
	Copiers \& Fax	$41,300.00$	$-28,600.10$	$29,000.00$	$68,100.00$
	Office Machines	$51,400.00$	$180,300.10$	$39,000.00$	$36,500.00$
	Comms (Telephones)	$49,700.00$	$120,400.10$	$86,000.00$	$-59,800.00$

What is the goal of this representation?

Why are we visualising?

We can improve by using 'pop-out' to bring attention to negative values.

Category	Sub-Category	Consumer	Corporate	Home Office	Small Business
Furniture	Bookcases	-45.93	$-9,300.00$	$-16,000.00$	$-7,600.00$
	Chairs \& Chairmats	$42,900.00$	$41,300.10$	$41,000.00$	$25,600.00$
	Office Furnishings	$12,000.00$	$27,300.10$	$42,000.00$	$18,600.00$
	Tables	$-12,300.00$	$-35,400.10$	$-43,000.00$	$-8,000.00$
Technology	Computer Peripherals	$14,100.56$	$45,300.00$	$17,000.00$	$17,300.00$
	Copiers \& Fax	$41,300.00$	$28,600.10$	$29,000.00$	$68,100.00$
	Office Machines	$51,400.00$	$180,300.10$	$39,000.00$	$36,500.00$
	Comms (Telephones)	$49,700.00$	$120,400.10$	$86,000.00$	$-59,800.00$

Why are we visualising?

Or, adding some additional indicators can provide an idea of intensity.

Category	Sub-Category	Consumer	Corporate	Home Office	Small Business
Furniture	Bookcases	-45.93\|	-9,300.00	-16,000.00	-7,600.0¢
	Chairs \& Chairmats	42,900.00	41,300.10	41,000.00	25,600.00
	Office Furnishings	12,000.00	27,300.10	42,000.00	18,600.00
	Tables	-12,300.00	-35,400.10	$-43,000.00$	-8,000.00
Technology	Computer Peripherals	14,100.56	45,300.00	17,000.00	17,300.00
	Copiers \& Fax	41,300.00	28,600.10	29,000.00	68,100.00
	Office Machines	51,400.00	180,300.10	39,000.00	36,500.00
	Comms (Telephones)	49,700.00	120,400.10	86,000.00	-59,800.00

Why are we visualising?

Or, adding some additional indicators can provide an idea of intensity.

Category	Sub-Category	Consumer	Corporate	Home Office	Small Business
Furniture	Bookcases	-45.93\|	-9,300.00	-16,000.00	-7,600.0¢
	Chairs \& Chairmats	42,900.00	41,300.10	41,000.00	25,600.00
	Office Furnishings	12,000.00	27.300.10	42,000.00	18,600.00
	Tables	-12,300.00	-35,400.10	-43,000.00	-8,000.0¢
Technology	Computer Peripherals	14,100.56	45,300.00	17,000.00	17,300.00
	Copiers \& Fax	41,300.00	28,600.10	29,000.00	68,100.00
	Office Machines	51,400.00	180,300.10	39,000.00	36,500.00
	Comms (Telephones)	49,700.00	120,400.10	86,000.00	-59,800.00

How we present information depends on why we are presenting it...

Why are we visualising?

Sometimes it is to communicate information

We can use visualisation to better communicate concepts that aren't easily explained using text alone.

Increase in mean and variance

Sometimes visualization is needed to figure out what the best way to represent a data set can be...combining analytics, visualization, and human reasoning.

This is visual analytics.

Why are we visualising?

Discovery and Exploration

Joint Work with Ilias Koutsakis and Gilles Louppe @ CERN

```
What are we
visualisina?
```


Major data types \& classifications of them

How can we visualise?

How can we visualize?

The components of a visualization.

Good and bad practices.

How can you encode information optimally?

此
Θ Arrange

\oplus Map
from qualitative and quantitative attributes

$$
\longmapsto-\quad \because \square \quad 1 / \sim \quad 1))
$$

Manipulate

\rightarrow Filter

\rightarrow Aggregate

\rightarrow Superimpose \rightarrow Embed

How can you encode information optimally?

클 \rightarrow - Encode
Θ Arrange

Θ Map

Manipulate

Facet

Reduce
\rightarrow Filter

\rightarrow Aggregate

\rightarrow Embed

If we don't follow grammatical rules or spell correctly, the meaning of text can be lost.

The same applies for visualisations. We can compose visualisations using a vocabulary (shapes, colour, texture,...), and a grammar. If we learn these, we can do better when it comes to communicating visually.

Graphs are like jokes. If you have to explain them, they didn't work.

Anon.

FEB MAR APR MAY JUN JUL AUG
SEP OCT NOV
DEC

2	10	4	5	6	9	1	3	5	3	4	7

```
\begin{tabular}{cccccccccccc} 
JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP & OCT & NOV & DEC \\
2 & 10 & 4 & 5 & 6 & 9 & 1 & 3 & 5 & 3 & 4 & 7
\end{tabular}

Scatter

\begin{tabular}{cccccccccccc} 
JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP & OCT & NOV & DEC \\
2 & 10 & 4 & 5 & 6 & 9 & 1 & 3 & 5 & 3 & 4 & 7
\end{tabular}

\begin{tabular}{cccccccccccc} 
JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP & OCT & NOV & DEC \\
2 & 10 & 4 & 5 & 6 & 9 & 1 & 3 & 5 & 3 & 4 & 7
\end{tabular}


\section*{Histogram}

\begin{tabular}{cccccccccccc} 
JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP & OCT & NOV & DEC \\
2 & 10 & 4 & 5 & 6 & 9 & 1 & 3 & 5 & 3 & 4 & 7
\end{tabular}

\begin{tabular}{cccccccccccc} 
JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP & OCT & NOV & DEC \\
2 & 10 & 4 & 5 & 6 & 9 & 1 & 3 & 5 & 3 & 4 & 7
\end{tabular}

\begin{tabular}{cccccccccccc} 
JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP & OCT & NOV & DEC \\
2 & 10 & 4 & 5 & 6 & 9 & 1 & 3 & 5 & 3 & 4 & 7
\end{tabular}





Size
Saturation


JAN FEB MAR APR MAY JUN
JUL
AUG
SEP
OCT
NOV DEC
\begin{tabular}{cccccccccccc} 
JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP & OCT & NOV & DEC \\
2 & 10 & 4 & 5 & 6 & 9 & 1 & 3 & 5 & 3 & 4 & 7
\end{tabular}





Size
Saturation


Size \& Saturation
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
\begin{tabular}{cccccccccccc} 
JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP & OCT & NOV & DEC \\
2 & 10 & 4 & 5 & 6 & 9 & 1 & 3 & 5 & 3 & 4 & 7
\end{tabular}




Size
Saturation

Size \& Saturation
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC


\section*{And that's just a really simple low dimensional example}

Moreover, all of these visualizations encode the information, but the decode error (interpreting, comparing, ...) for each graph is different

But, why?

\section*{Our perception system does not behave linearly.}

Some stimuli are perceived less or more than intended.


Steven's Psychophysical Power Law: \(\mathrm{S}=\mathrm{I}^{\mathrm{N}}\)

\section*{We have to be careful when mapping data to the visual world}

Some visual channels are more effective for some data types over others.


Cleveland \& McGill's Results 1984


T6: Pie charts have also been studied in more detail recently

It's quite clear that bar charts are a more effective visual encoding here than pie charts... our visual system is very good at judging lengths, but not so much at judging angles and areas.

https://commons.wikimedia.org/wiki/File:Piecharts.svg

\section*{T6: Pie charts have also been studied in more detail recently}

When someone reads or compares values in a pie chart, what are they doing? Comparing angles, areas, length of arc?


Robert Kosara and Drew Skau. 2016. Judgment error in pie chart variations. In Proceedings of the Eurographics: Short Papers (EuroVis '16). Eurographics Association, Goslar Germany, Germany, 91-95. DOI: https://doi.org/10.2312/eurovisshort. 20161167

Drew Skau and Robert Kosara. 2016. Arcs, Angles, or Areas: Individual Data Encodings in Pie and Donut Charts. Comput. Graph.


T1/T7: Bar charts are better than areas...


T1/T7: Bar charts are better than areas...



This is exactly the same data, at the right scaling.

T8/T9: Different aspect ratios for rectangles also result in greater or fewer errors in estimating


\section*{Aspect ratio is important!}

For line charts there is a basic guideline on optimising plot aspect ratio to have an average angle of 45 degrees from Cleveland et al, 1988.


Although, like most things, not everyone agrees with this guideline. In this case I think it makes sense, you can decide :)

\section*{HOW}

\section*{We have to be careful when mapping data to the visual world}

Some visual channels are more effective for some
data types over others.

Some data has a natural mapping that our brains expect given certain types of data

\section*{Natural Mappings}
\begin{tabular}{|c|c|c|}
\hline Graphical Code & & Semantics \\
\hline Small shapes defined by closed contour, texture, color. & \(\pm \bigcirc \square \triangle\) 扣 & Object, idea, entity, node. \\
\hline Spatially ordered graphical objects. & 1 \% & Related information or a sequence. In a sequence the left-to-right ordering convention is borrowed from written language (English, French, etc.). \\
\hline Graphical objects in proximity & \[
\because: \because
\] & Similar concepts \\
\hline Graphical objects having the same shape color, or texture. & \(++\underset{+}{+} \square_{+}^{\square}\) & Similar concepts \\
\hline Size, position or height of graphical object & \[
\text { ■ lıll } \quad . \therefore
\] & Size, quantity, importance, 2D location \\
\hline Shapes connected by contour &  & Related entities, path between entities. \\
\hline Thickness of connecting contour &  & Strength of relationship. \\
\hline Color and texture of connecting contour &  & Type of relationship. \\
\hline Shapes enclosed by a contour, a common texture or color & \[
\because \circ
\] & Contained/related entities. \\
\hline Nested/partitioned regions & \(\bigcirc\) & Hierarchical concepts. \\
\hline Attached shapes & & Parts of a conceptual structure. \\
\hline
\end{tabular}

\section*{LONDON BUSES}


All data sourced from Transport for anderा(this work is not affiliated to TfL in any way), apart from list of bus routes, which is sourced from lendenbusroutes.net. The dataset used is a \(5 \%\) sample of all Oyster card journeys performed in a week during Bar charts for
comparisons. November 2009 on Bus, Tube, DLR and London Overground. Note that bus routes are based on bus stop locations and are therefore only approximate.
(1) Include Bit Parts
1. Domestic (Unadjusted)

Analyzing the 10 Highest Grossing Actors of All Time

\title{
Time should be on an X-Axis \\ CLICK AN ACTOR TO ANALYZE \\ 
}


Correlations as
CRITICS SCORE VS. AUDIENCE SCORE SIZED BY GROSS

\section*{a scatter plot.}


CRITICS SCORE
60\%

DOMESTIC (UNADJ) 20
\$9,041M


63\%


Bar charts for comparisons.

\section*{HOW}

\section*{We have to be careful when mapping data to the visual world}

Some visual channels are more effective for some data types over others.

Some data has a natural mapping that our
brains expect given certain types of data

There are many intricacies of the visual system that must be considered

\section*{The pop-out effect}

We pre-attentively process a scene, and some visual elements stand out more than others.
- Parallel processing on many individual channels
- speed independent of distractor count
- speed depends on channel and amount of difference from distractors
- Serial search for (almost all) combinations
- speed depends on number of distractors

\section*{The pop-out effect}

We pre-attentively process a scene, and some visual elements stand out more than others.

- Parallel processing on many individual channels
- speed independent of distractor count
- speed depends on channel and amount of difference from distractors
- Serial search for (almost all) combinations
- speed depends on number of distractors

\section*{The pop-out effect}

We pre-attentively process a scene, and some visual elements stand out more than others.

- Parallel processing on many individual channels
- speed independent of distractor count
- speed depends on channel and amount of difference from distractors
- Serial search for (almost all) combinations
- speed depends on number of distractors

\section*{The pop-out effect}

We pre-attentively process a scene, and some visual elements stand out more than others.

- Parallel processing on many individual channels
- speed independent of distractor count
- speed depends on channel and amount of difference from distractors
- Serial search for (almost all) combinations
- speed depends on number of distractors

\section*{The pop-out effect}

We pre-attentively process a scene, and some visual elements stand out more than others.

- Parallel processing on many individual channels
- speed independent of distractor count
- speed depends on channel and amount of difference from distractors
- Serial search for (almost all) combinations
- speed depends on number of distractors



Not all exhibit the pop-out effect!


Not all exhibit the pop-out effect!
Parallel line pairs do not pop out from tilted pairs...


Not all exhibit the pop-out effect!
Parallel line pairs do not pop out from tilted pairs...
And not all visual channels pop out as quickly as other. E.g. colour is always on top.

The pop-out effect
\begin{tabular}{lllllllllllllllllllllllllllll}
3 & 3 & 0 & 3 & 0 & 1 & 8 & 7 & 6 & 8 & 2 & 1 & 4 & 0 & 3 & 8 & 3 & 7 & 7 & 2 & 0 & 5 & 2 & 3 & 2 & 7 & 0 & 2 & 0 \\
7 & 1 & 4 & 6 & 0 & 2 & 1 & 3 & 2 & 7 & 6 & 0 & 2 & 5 & 6 & 3 & 2 & 5 & 7 & 6 & 3 & 3 & 0 & 2 & 0 & 3 & 0 & 7 & 2 \\
8 & 7 & 5 & 7 & 2 & 8 & 3 & 8 & 7 & 7 & 8 & 2 & 0 & 7 & 7 & 5 & 2 & 3 & 1 & 1 & 5 & 6 & 3 & 8 & 4 & 7 & 8 & 2 & 0 \\
0 & 5 & 0 & 5 & 1 & 6 & 1 & 7 & 5 & 6 & 8 & 0 & 4 & 4 & 6 & 7 & 4 & 7 & 1 & 4 & 0 & 0 & 8 & 4 & 4 & 3 & 0 & 3 & 2 \\
2 & 4 & 3 & 1 & 3 & 5 & 4 & 9 & 5 & 0 & 7 & 6 & 0 & 7 & 4 & 3 & 1 & 8 & 2 & 7 & 3 & 4 & 6 & 0 & 2 & 4 & 8 & 2 & 3 \\
8 & 6 & 2 & 2 & 6 & 5 & 4 & 6 & 7 & 0 & 7 & 6 & 0 & 0 & 3 & 9 & 0 & 2 & 4 & 7 & 1 & 7 & 2 & 3 & 3 & 5 & 8 & 7 & 0 \\
0 & 8 & 4 & 5 & 1 & 3 & 1 & 7 & 6 & 4 & 5 & 4 & 1 & 2 & 4 & 5 & 3 & 3 & 5 & 4 & 9 & 6 & 7 & 7 & 6 & 3 & 4 & 2 & 5 \\
4 & 7 & 7 & 0 & 2 & 2 & 0 & 1 & 1 & 7 & 7 & 7 & 0 & 2 & 6 & 6 & 4 & 7 & 5 & 8 & 6 & 1 & 4 & 3 & 7 & 8 & 5 & 4 & 6 \\
4 & 3 & 6 & 6 & 4 & 6 & 6 & 2 & 8 & 4 & 8 & 5 & 3 & 7 & 8 & 8 & 1 & 3 & 8 & 5 & 4 & 5 & 7 & 4 & 0 & 3 & 2 & 8 & 4 \\
5 & 5 & 0 & 3 & 5 & 3 & 5 & 3 & 8 & 3 & 2 & 3 & 8 & 2 & 3 & 1 & 6 & 2 & 7 & 2 & 4 & 6 & 3 & 6 & 4 & 4 & 3 & 2 & 5 \\
4 & 4 & 0 & 2 & 1 & 7 & 2 & 4 & 4 & 7 & 4 & 1 & 9 & 2 & 4 & 5 & 2 & 5 & 0 & 4 & 0 & 0 & 5 & 3 & 6 & 3 & 3 & 6 & 7 \\
7 & 4 & 6 & 6 & 8 & 7 & 5 & 7 & 9 & 2 & 0 & 2 & 8 & 8 & 8 & 8 & 3 & 2 & 4 & 2 & 6 & 4 & 0 & 4 & 6 & 3 & 7 & 2 & 1 \\
0 & 1 & 7 & 1 & 5 & 9 & 1 & 4 & 2 & 8 & 7 & 3 & 7 & 1 & 4 & 5 & 1 & 8 & 7 & 8 & 0 & 5 & 1 & 7 & 0 & 5 & 8 & 8 & 1 \\
2 & 8 & 5 & 2 & 1 & 2 & 8 & 7 & 7 & 6 & 2 & 5 & 6 & 2 & 6 & 4 & 1 & 5 & 1 & 6 & 1 & 2 & 1 & 1 & 0 & 5 & 6 & 4 & 0 \\
2 & 1 & 1 & 7 & 7 & 2 & 0 & 0 & 1 & 8 & 7 & 0 & 2 & 9 & 0 & 2 & 8 & 5 & 7 & 8 & 4 & 6 & 0 & 6 & 5 & 0 & 7 & 1 & 2 \\
0 & 5 & 2 & 4 & 1 & 5 & 3 & 3 & 1 & 5 & 5 & 1 & 4 & 0 & 1 & 6 & 4 & 3 & 3 & 9 & 8 & 8 & 3 & 4 & 6 & 8 & 4 & 8 & 6 \\
7 & 3 & 7 & 5 & 2 & 4 & 0 & 2 & 7 & 6 & 3 & 8 & 5 & 5 & 4 & 5 & 8 & 8 & 7 & 5 & 5 & 6 & 5 & 6 & 7 & 9 & 7 & 7 & 4 \\
0 & 3 & 2 & 8 & 1 & 4 & 4 & 6 & 0 & 8 & 2 & 3 & 0 & 1 & 3 & 4 & 6 & 2 & 0 & 5 & 7 & 7 & 3 & 6 & 1 & 8 & 7 & 3 & 5 \\
4 & 4 & 8 & 3 & 3 & 3 & 5 & 0 & 1 & 0 & 3 & 8 & 6 & 3 & 2 & 0 & 5 & 0 & 6 & 1 & 3 & 3 & 4 & 3 & 6 & 1 & 5 & 8 & 6 \\
1 & 0 & 2 & 2 & 7 & 6 & 3 & 3 & 0 & 8 & 8 & 0 & 3 & 1 & 8 & 8 & 1 & 2 & 1 & 7 & 5 & 2 & 9 & 3 & 5 & 8 & 3 & 2 & 5
\end{tabular}

The pop-out effect
\begin{tabular}{lllllllllllllllllllllllllllll}
3 & 3 & 0 & 3 & 0 & 1 & 8 & 7 & 6 & 8 & 2 & 1 & 4 & 0 & 3 & 8 & 3 & 7 & 7 & 2 & 0 & 5 & 2 & 3 & 2 & 7 & 0 & 2 & 0 \\
7 & 1 & 4 & 6 & 0 & 2 & 1 & 3 & 2 & 7 & 6 & 0 & 2 & 5 & 6 & 3 & 2 & 5 & 7 & 6 & 3 & 3 & 0 & 2 & 0 & 3 & 0 & 7 & 2 \\
8 & 7 & 5 & 7 & 2 & 8 & 3 & 8 & 7 & 7 & 8 & 2 & 0 & 7 & 7 & 5 & 2 & 3 & 1 & 1 & 5 & 6 & 3 & 8 & 4 & 7 & 8 & 2 & 0 \\
0 & 5 & 0 & 5 & 1 & 6 & 1 & 7 & 5 & 6 & 8 & 0 & 4 & 4 & 6 & 7 & 4 & 7 & 1 & 4 & 0 & 0 & 8 & 4 & 4 & 3 & 0 & 3 & 2 \\
2 & 4 & 3 & 1 & 3 & 5 & 4 & 9 & 5 & 0 & 7 & 6 & 0 & 7 & 4 & 3 & 1 & 8 & 2 & 7 & 3 & 4 & 6 & 0 & 2 & 4 & 8 & 2 & 3 \\
8 & 6 & 2 & 2 & 6 & 5 & 4 & 6 & 7 & 0 & 7 & 6 & 0 & 0 & 3 & 9 & 0 & 2 & 4 & 7 & 1 & 7 & 2 & 3 & 3 & 5 & 8 & 7 & 0 \\
0 & 8 & 4 & 5 & 1 & 3 & 1 & 7 & 6 & 4 & 5 & 4 & 1 & 2 & 4 & 5 & 3 & 3 & 5 & 4 & 9 & 6 & 7 & 7 & 6 & 3 & 4 & 2 & 5 \\
4 & 7 & 7 & 0 & 2 & 2 & 0 & 1 & 1 & 7 & 7 & 7 & 0 & 2 & 6 & 6 & 4 & 7 & 5 & 8 & 6 & 1 & 4 & 3 & 7 & 8 & 5 & 4 & 6 \\
4 & 3 & 6 & 6 & 4 & 6 & 6 & 2 & 8 & 4 & 8 & 5 & 3 & 7 & 8 & 8 & 1 & 3 & 8 & 5 & 4 & 5 & 7 & 4 & 0 & 3 & 2 & 8 & 4 \\
5 & 5 & 0 & 3 & 5 & 3 & 5 & 3 & 8 & 3 & 2 & 3 & 8 & 2 & 3 & 1 & 6 & 2 & 7 & 2 & 4 & 6 & 3 & 6 & 4 & 4 & 3 & 2 & 5 \\
4 & 4 & 0 & 2 & 1 & 7 & 2 & 4 & 4 & 7 & 4 & 1 & 9 & 2 & 4 & 5 & 2 & 5 & 0 & 4 & 0 & 0 & 5 & 3 & 6 & 3 & 3 & 6 & 7 \\
7 & 4 & 6 & 6 & 8 & 7 & 5 & 7 & 9 & 2 & 0 & 2 & 8 & 8 & 8 & 8 & 3 & 2 & 4 & 2 & 6 & 4 & 0 & 4 & 6 & 3 & 7 & 2 & 1 \\
0 & 1 & 7 & 1 & 5 & 9 & 1 & 4 & 2 & 8 & 7 & 3 & 7 & 1 & 4 & 5 & 1 & 8 & 7 & 8 & 0 & 5 & 1 & 7 & 0 & 5 & 8 & 8 & 1 \\
2 & 8 & 5 & 2 & 1 & 2 & 8 & 7 & 7 & 6 & 2 & 5 & 6 & 2 & 6 & 4 & 1 & 5 & 1 & 6 & 1 & 2 & 1 & 1 & 0 & 5 & 6 & 4 & 0 \\
2 & 1 & 1 & 7 & 7 & 2 & 0 & 0 & 1 & 8 & 7 & 0 & 2 & 9 & 0 & 2 & 8 & 5 & 7 & 8 & 4 & 6 & 0 & 6 & 5 & 0 & 7 & 1 & 2 \\
0 & 5 & 2 & 4 & 1 & 5 & 3 & 3 & 1 & 5 & 5 & 1 & 4 & 0 & 1 & 6 & 4 & 3 & 3 & 9 & 8 & 8 & 3 & 4 & 6 & 8 & 4 & 8 & 6 \\
7 & 3 & 7 & 5 & 2 & 4 & 0 & 2 & 7 & 6 & 3 & 8 & 5 & 5 & 4 & 5 & 8 & 8 & 7 & 5 & 5 & 6 & 5 & 6 & 7 & 9 & 7 & 7 & 4 \\
0 & 3 & 2 & 8 & 1 & 4 & 4 & 6 & 0 & 8 & 2 & 3 & 0 & 1 & 3 & 4 & 6 & 2 & 0 & 5 & 7 & 7 & 3 & 6 & 1 & 8 & 7 & 3 & 5 \\
4 & 4 & 8 & 3 & 3 & 3 & 5 & 0 & 1 & 0 & 3 & 8 & 6 & 3 & 2 & 0 & 5 & 0 & 6 & 1 & 3 & 3 & 4 & 3 & 6 & 1 & 5 & 8 & 6 \\
1 & 0 & 2 & 2 & 7 & 6 & 3 & 3 & 0 & 8 & 8 & 0 & 3 & 1 & 8 & 8 & 1 & 2 & 1 & 7 & 5 & 2 & 9 & 3 & 5 & 8 & 3 & 2 & 5
\end{tabular}

The pop-out effect
\begin{tabular}{lllllllllllllllllllllllllllll}
3 & 3 & 0 & 3 & 0 & 1 & 8 & 7 & 6 & 8 & 2 & 1 & 4 & 0 & 3 & 8 & 3 & 7 & 7 & 2 & 0 & 5 & 2 & 3 & 2 & 7 & 0 & 2 & 0 \\
7 & 1 & 4 & 6 & 0 & 2 & 1 & 3 & 2 & 7 & 6 & 0 & 2 & 5 & 6 & 3 & 2 & 5 & 7 & 6 & 3 & 3 & 0 & 2 & 0 & 3 & 0 & 7 & 2 \\
8 & 7 & 5 & 7 & 2 & 8 & 3 & 8 & 7 & 7 & 8 & 2 & 0 & 7 & 7 & 5 & 2 & 3 & 1 & 1 & 5 & 6 & 3 & 8 & 4 & 7 & 8 & 2 & 0 \\
0 & 5 & 0 & 5 & 1 & 6 & 1 & 7 & 5 & 6 & 8 & 0 & 4 & 4 & 6 & 7 & 4 & 7 & 1 & 4 & 0 & 0 & 8 & 4 & 4 & 3 & 0 & 3 & 2 \\
2 & 4 & 3 & 1 & 3 & 5 & 4 & 9 & 5 & 0 & 7 & 6 & 0 & 7 & 4 & 3 & 1 & 8 & 2 & 7 & 3 & 4 & 6 & 0 & 2 & 4 & 8 & 2 & 3 \\
8 & 6 & 2 & 2 & 6 & 5 & 4 & 6 & 7 & 0 & 7 & 6 & 0 & 0 & 3 & 9 & 0 & 2 & 4 & 7 & 1 & 7 & 2 & 3 & 3 & 5 & 8 & 7 & 0 \\
0 & 8 & 4 & 5 & 1 & 3 & 1 & 7 & 6 & 4 & 5 & 4 & 1 & 2 & 4 & 5 & 3 & 3 & 5 & 4 & 9 & 6 & 7 & 7 & 6 & 3 & 4 & 2 & 5 \\
4 & 7 & 7 & 0 & 2 & 2 & 0 & 1 & 1 & 7 & 7 & 7 & 0 & 2 & 6 & 6 & 4 & 7 & 5 & 8 & 6 & 1 & 4 & 3 & 7 & 8 & 5 & 4 & 6 \\
4 & 3 & 6 & 6 & 4 & 6 & 6 & 2 & 8 & 4 & 8 & 5 & 3 & 7 & 8 & 8 & 1 & 3 & 8 & 5 & 4 & 5 & 7 & 4 & 0 & 3 & 2 & 8 & 4 \\
5 & 5 & 0 & 3 & 5 & 3 & 5 & 3 & 8 & 3 & 2 & 3 & 8 & 2 & 3 & 1 & 6 & 2 & 7 & 2 & 4 & 6 & 3 & 6 & 4 & 4 & 3 & 2 & 5 \\
4 & 4 & 0 & 2 & 1 & 7 & 2 & 4 & 4 & 7 & 4 & 1 & 9 & 2 & 4 & 5 & 2 & 5 & 0 & 4 & 0 & 0 & 5 & 3 & 6 & 3 & 3 & 6 & 7 \\
7 & 4 & 6 & 6 & 8 & 7 & 5 & 7 & 9 & 2 & 0 & 2 & 8 & 8 & 8 & 8 & 3 & 2 & 4 & 2 & 6 & 4 & 0 & 4 & 6 & 3 & 7 & 2 & 1 \\
0 & 1 & 7 & 1 & 5 & 9 & 1 & 4 & 2 & 8 & 7 & 3 & 7 & 1 & 4 & 5 & 1 & 8 & 7 & 8 & 0 & 5 & 1 & 7 & 0 & 5 & 8 & 8 & 1 \\
2 & 8 & 5 & 2 & 1 & 2 & 8 & 7 & 7 & 6 & 2 & 5 & 6 & 2 & 6 & 4 & 1 & 5 & 1 & 6 & 1 & 2 & 1 & 1 & 0 & 5 & 6 & 4 & 0 \\
2 & 1 & 1 & 7 & 7 & 2 & 0 & 0 & 1 & 8 & 7 & 0 & 2 & 9 & 0 & 2 & 8 & 5 & 7 & 8 & 4 & 6 & 0 & 6 & 5 & 0 & 7 & 1 & 2 \\
0 & 5 & 2 & 4 & 1 & 5 & 3 & 3 & 1 & 5 & 5 & 1 & 4 & 0 & 1 & 6 & 4 & 3 & 3 & 9 & 8 & 8 & 3 & 4 & 6 & 8 & 4 & 8 & 6 \\
7 & 3 & 7 & 5 & 2 & 4 & 0 & 2 & 7 & 6 & 3 & 8 & 5 & 5 & 4 & 5 & 8 & 8 & 7 & 5 & 5 & 6 & 5 & 6 & 7 & 9 & 7 & 7 & 4 \\
0 & 3 & 2 & 8 & 1 & 4 & 4 & 6 & 0 & 8 & 2 & 3 & 0 & 1 & 3 & 4 & 6 & 2 & 0 & 5 & 7 & 7 & 3 & 6 & 1 & 8 & 7 & 3 & 5 \\
4 & 4 & 8 & 3 & 3 & 3 & 5 & 0 & 1 & 0 & 3 & 8 & 6 & 3 & 2 & 0 & 5 & 0 & 6 & 1 & 3 & 3 & 4 & 3 & 6 & 1 & 5 & 8 & 6 \\
1 & 0 & 2 & 2 & 7 & 6 & 3 & 3 & 0 & 8 & 8 & 0 & 3 & 1 & 8 & 8 & 1 & 2 & 1 & 7 & 5 & 2 & 9 & 3 & 5 & 8 & 3 & 2 & 5
\end{tabular}


Check out https://www.nytimes.com/interactive/2015/11/17/health/wiredwell-food-diary-supertracker.html - beautiful storytelling using visualization and annotations.

\section*{Relative Comparison}


\section*{Relative Comparison}


\section*{Relative Comparison}


Heer and Bostock 2010 Crowdsourced Results


\section*{Relative Comparison}


\section*{Relative Comparison}


\section*{Relative Comparison}



\section*{Relative Comparison}


\section*{Relative Comparison}

The problems with unaligned areas can be seen in stacked charts. A small number of values is ok, but too many and nothing will be interpretable.


\section*{Relative Comparison}

Irish and Swiss Exports of Sheep


\section*{Relative Comparison}

The problems with unaligned areas can be seen in stacked charts. A small number of values is ok, but too many and nothing will be interpretable.


\section*{Relative Comparison}

\section*{4 values}

Aligned


Unordered


\section*{Relative Comparison}

\section*{4 values}

Aligned


8 values


Unordered



\section*{The infamous GAP minder chart is subject to such issues with relative comparison.}

Heer and Bostock 2010 Crowdsourced Results


\section*{Relative Comparison}

8 values


20 values


\section*{A) Known and Unknown Target Search}


Target shown before hand (known) or not shown (unknown). The unique colour here is the orange square.
B) Subitizing (how many colours?)

Random

\(\checkmark\)

Grouped

\(\vee\)

Which grid has more colours?

Response Time and Accuracy Results



How Capacity Limits of Attention Influence Information Visualization Effectiveness.
Haroz S. and Whitney D., IEEE TVCG 2012

\section*{A) Known and Unknown Target Search}


Target shown before hand (known) or not shown (unknown). The unique colour here is the orange square.
B) Subitizing (how many colours?)

Random

\(\vee\)

Grouped

\(V\)

Which grid has more colours?

Response Time and Accuracy Results



How Capacity Limits of Attention Influence Information Visualization Effectiveness.
Haroz S. and Whitney D., IEEE TVCG 2012

\section*{A) Known and Unknown Target Search}


Target shown before hand (known) or not shown (unknown). The unique colour here is the orange square.
B) Subitizing (how many colours?)

Random

\(\vee\)

Grouped

\(V\)

Which grid has more colours?


Response Time and Accuracy Results


How Capacity Limits of Attention Influence Information Visualization Effectiveness.
A) Known and Unknown Target Search


Target shown before hand (known) or not shown (unknown). The unique colour here is the orange square.

C) Response Time and Accuracy Results

B) Subitizing (how many colours?)


How Capacity Limits of Attention Influence Information Visualization Effectiveness.


\section*{Gestalt Laws}
A. Law of Closure

F. Law of Good

Continuation

B. Law of Similarity

G. Contour Saliency

C. Law of Proximity

-
H. Law of Common Fate


D. Law of Connectedness


\section*{I. Law of Past Experience}

J. Law of Pragnanz


\section*{HOW}

We have to be careful when mapping data to the visual world

Some visual channels are more effective for some data types over others.

Some data has a natural mapping that our
brains expect given certain types of data
There are many visual tricks that can be observed due to
how the visual system works
We don't see in 3D, and we have difficulties interpreting information on the Z-axis.

\section*{2D always wins...}

Thousands of points up/down and left/right


Our visual system is not good at interpreting information on the \(z\)-axis.
*3D is normally only used for exploration of inherently 3D information, such as medical imaging data...

\section*{2D always wins...}


These options, taken randomly from google image searches so how widely 3D is abused in information visualisation. All of these charts are manipulating our perception of the data by using the \(Z\) axis to occlude information...it would be avoided in 2D.

\section*{2D always wins...}


3D hides information. Is there anything behind the large bars? We'll never know.

\section*{OHLC Q1 2009}


3D is totally useless in this example. It only makes the nearest points look bigger, and the further away points smaller than they are.

\section*{HOW}

We have to be careful when mapping data to the visual world
```

Some visual channels are more effective for some
data types over others.
Some data has a natural mapping that our
brains expect given certain types of data
There are many visual tricks that can be observed due to
how the visual system works
We don't see in 3D, and we have difficulties interpreting
information on the Z-axis.
Colour

```

\section*{Colour}

\section*{Measles}

http://graphics.wsj.com/infectious-diseases-and-vaccines/

\section*{Colour}

The simplest, yet most abused of all visual encodings.


Estimated fraction of precipitation lost to evapotranspiration 1971-2000
\begin{tabular}{|c|c|c|}
\hline 0.0-0.09 & 0.5-0.59 & 1.0-1.09 \\
\hline 0.1-0.19 & 0.6-0.69 & 1.1-1.19 \\
\hline 0.2-0.29 & 0.7-0.79 & 1.2-1.29 \\
\hline 0.3-0.39 & 0.8-0.89 & \\
\hline 0.4-0.49 & 0.9-0.99 & \\
\hline
\end{tabular}

FIGURE 13. Estimated Mean Annual Ratio of Actual Evapotranspiration (ET) to Precipitation ( \(P\) ) for the Conterminous U.S. for the Period 1971-2000. Estimates are based on the regression equation in Table 1 that includes land cover. Calculations of ET/P were made first at the within each county. Areas with fractions \(>1\) are agricultural counties that either import surface water or mine deep groundwater

The problem is that a smooth step in a value does not equate to a smooth colour transition...

\section*{Colour}

Additionally, colour is not equally binned in reality. We perceive colours differently due to an increased sensitivity to the yellow part of the spectrum...



\section*{Colour}

Luminosity is also not stable across the colours, meaning some colours will pop out more than others... and not always intentionally.

https://mycarta.wordpress.com/2012/10/06/the-rainbow-is-deadlong-live-the-rainbow-part-3/

\section*{Colour}

Luminosity is also not stable across the colours, meaning some colours will pop out more than others... and not always intentionally.


https://mycarta.wordpress.com/2012/10/06/the-rainbow-is-deadlong-live-the-rainbow-part-3/

\section*{Colour}

And how we perceive changes in hue is also very different.


Gregory compared the wavelength of light with the smallest observable difference in hue (expressed as wavelength difference).

As you can see, the line is not flat.

Is there a colour palette for scientific visualisation that works?

\section*{Colour \\ HSL linear L rainbow palette}

https://mycarta.wordpress.com/2012/10/06/the-rainbow-is-deadlong-live-the-rainbow-part-3/
Kindlmann, G. Reinhard, E. and Creem, S., 2002, Face-based Luminance Matching for Perceptual Colormap Generation, IEEE Proceedings of the conference on Visualization '02

\section*{Colour HSL linear L rainbow palette}

These are available in matplotlib and therefore in seaborn, etc, so there's no excuse :)

\section*{Colour}

There are also lots of default colour maps that can be applied to particular data types.


\section*{Color}

Here l'm showing the correlation between football player attributes. Is the choice of colour map helping this comparison?
```

import seaborne as sns
sns.clustermap(fifa.corr(), cmap='Greys')

```


\section*{Color}

Here l'm showing the correlation between football player attributes. Is the choice of colour map helping this comparison?


\section*{Color}

Here l'm showing the correlation between football player attributes. Is the choice of colour map helping this comparison?


\section*{Color}

Here l'm showing the correlation between football player attributes. Is the choice of colour map helping this comparison?


\section*{Color}

Here l'm showing the correlation between football player attributes. Is the choice of colour map helping this comparison?


\section*{Color}

You also don't want to have too many colours.
Too many colours means that users have to remember what a colour means. So a max of around 8 categories in a plot is recommended, otherwise the 'distance' between colours becomes too small.



Much better

Here 8 colours are being used to represent 8 countries.```


[^0]:    * from Noel Illinsky, http://complexdiagrams.com/

[^1]:    * from Noel Illinsky, http://complexdiagrams.com/

